令和4年度湖北広域行政事務センター クリスタルプラザ管理運営委員会会議次第

日 時 令和4年10月26日(水) 午後4時~ 場 所 湖北広域行政事務センター 工場棟3階 大会議室

- 1. 開 会
- 2. 管理者挨拶
- 3. 委員及び事務局の紹介
- 4. 委員長及び副委員長の選任
- 5. 議 題
 - (1) 令和3年度・令和4年度上半期クリスタルプラザの運営状況について
 - (2) その他
- 6. 閉 会

○会議資料

資料ア	クリスタルプラザ管理運営委員会委員名簿・・・・・・・・・・・・1、2
資料イ	クリスタルプラザ管理運営委員会に関する規則・・・・・・・・・3、4
資料1	平成24~令和3年度可燃ごみ収集・持込量内訳・・・・・・・・・5
資料2	令和3年度 クリスタルプラザ可燃ごみ搬入量実績表・・・・・・・・ 6
資料3	令和4年度上半期 クリスタルプラザ可燃ごみ搬入量実績表 ・・・・・・・ 7
資料4	平成24~令和3年度ごみ焼却処理施設運転管理状況 ・・・・・・・ 8
資料5	令和3年度 ごみ焼却処理施設運転管理状況・・・・・・・ 9
資料6	令和4年度上半期 ごみ焼却処理施設運転管理状況・・・・・・・・・ 10
資料7	令和3年度排ガス測定分析結果 (下半期分)・・・・・・・・・・・・・・ \cdot 11~21
資料8	令和4年度排ガス測定分析結果(上半期分)・・・・・・・・・・ 22~32
資料 9	令和4年度悪臭測定分析結果・・・・・・・・・・・・・・・・33 \sim 38
資料10	排ガス中の水銀の分析結果・・・・・・・・・・・・・・・ 39~45

○湖北広域行政事務センタークリスタルプラザ管理運営委員会に関する規則 (平成10年9月18日規則第2号)

(趣旨)

第1条 この規則は、湖北広域行政事務センターごみ焼却処理施設ならびにリサイクルプラザの設置および管理に関する条例(昭和44年湖北広域行政事務センター条例第8号)第7条の規定に基づく湖北広域行政事務センタークリスタルプラザ管理運営委員会(以下「委員会」という。)に関し、必要な事項を定めるものとする。

(所堂事務)

第2条 委員会は、次の各号に掲げる事項について調査、審議するものとする。

- (1) 湖北広域行政事務センタークリスタルプラザ(以下「クリスタルプラザ」という。)の管理および運営に関すること。
- (2) クリスタルプラザに係る公害の防止および環境の保全に関すること。
- (3) その他クリスタルプラザの管理運営に関し必要なこと。
- 2 委員会は、前項各号に掲げる事項について、自ら調査、審議して管理者に建議することができるものとする。

(組織)

第3条 委員会は、委員15人以内で組織する。

- 2 委員は、次の各号に掲げる者のうちから管理者が委嘱する。
- (1) 地域住民代表者
- (2) 湖北広域行政事務センター議会議員
- (3) 設置市の担当部長
- (4) 学識経験者
- (5) 各種団体の代表者
- 3 委員の任期は、2年とし、再任されることを妨げない。委員が欠けた場合における補欠委員の任期は、前任者の残任期間とする。

(委員長および副委員長)

第4条 委員会に、委員長を1人および副委員長を2人置く。

- 2 委員長および副委員長は、委員の互選により定める。
- 3 委員長は、会務を総理し、委員会を代表する。
- 4 副委員長は、委員長を補佐し、委員長に事故あるときまたは欠けたときは、その職務を代理する。

(顧問)

第5条 委員会に、顧問を置くことができる。

2 顧問は、管理者が委嘱する。

(会議)

第6条 委員会の会議(以下「会議」という。)は、委員長が招集し、委員長が会議の議長となる。

- 2 会議は、委員の半数以上が出席しなければ開くことができない。
- 3 委員長は、委員の半数以上から会議開催の請求があつたときは、これを招集しなければならない。
- 4 会議の議事は、出席委員の過半数をもつて決し、可否同数のときは、議長の決するところによる。

(部会)

第7条 委員会は、専門的に審議する必要があると認める事項が生じたときは、委員会に部会 を置くことができる。

2 部会は、委員長が指名する委員をもつて組織する。

(関係者の出席)

第8条 委員会および部会が必要と認めるときは、関係者の出席を求め、所掌事務について説明または報告をさせることができる。

(委員会等の運営)

第9条 委員会および部会の運営に関し必要な事項は、委員長が会議に諮つて定める。

(庶務)

第10条 委員会の庶務は、クリスタルプラザにおいて処理する。

(委任)

第11条 この規則に定めるもののほか必要な事項は、その都度管理者が定める。

付 則

この規則は、公布の日から施行する。

付 則 (平成 10 年 10 月 16 日規則第 3 号)

この規則は、公布の日から施行する。

付 則 (平成 11 年 3 月 31 日規則第 7 号)

この規則は、平成11年4月1日から施行する。

付 則(平成18年4月1日規則第5号)

この規則は、平成18年4月1日から施行する。

付 則(平成18年8月25日規則第7号)

この規則は、公布の日から施行する。

付 則 (平成 21 年 12 月 18 日規則第 6 号)

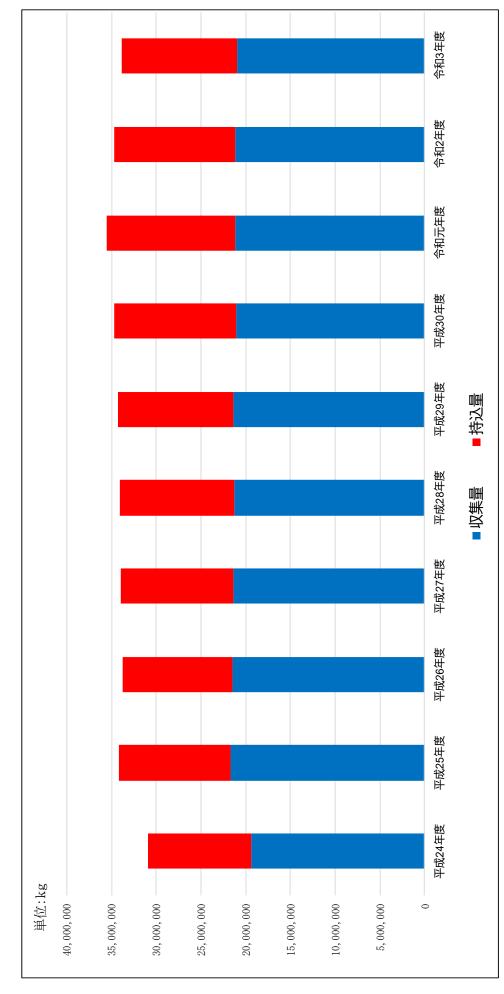
この規則は、平成22年1月1日から施行する。

附 則(平成26年4月1日規則第5号)

この規則は、平成26年4月1日から施行する。

附 則(平成27年2月1日規則第1号)

この規則は、平成27年4月1日から施行する。


附 則(令和2年4月1日規則第9号)

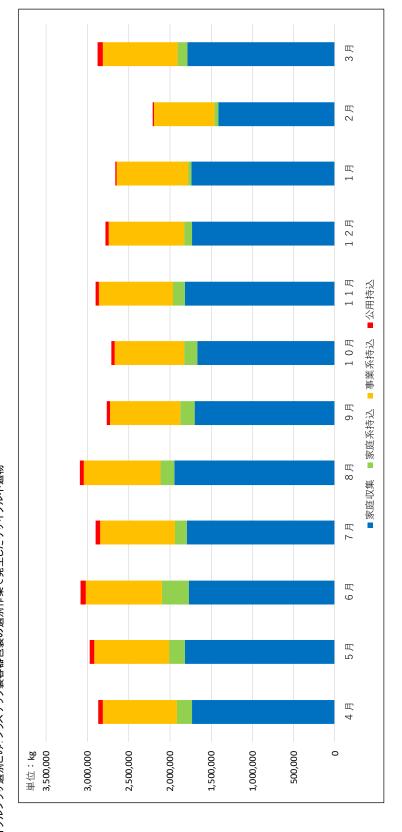
この規則は、令和2年4月1日から施行する。

資料 1

平成24~令和3年度可燃ごみ収集・持込量内訳

(単位:kg)	令和3年度	096,909,960	0 12,921,890	33,831,850
	令和2年度	21,212,270	13,476,260	34,688,530
	令和元年度	21,213,820	14,278,660	35,492,480
	平成30年度	21,063,320	13,662,100	34,725,420
	平成29年度	21,330,680	12,964,600	34,295,280
	平成28年度	21,233,640	12,841,070	34,074,710
	平成27年度	21,409,970	12,545,120	33,955,090
	平成26年度	21,526,440	12,206,490	33,732,930
	平成25年度	21,718,540	12,471,460	34,190,000
	平成24年度	19,437,890	11,485,170	30,923,060
		収集量	持込量	뺩

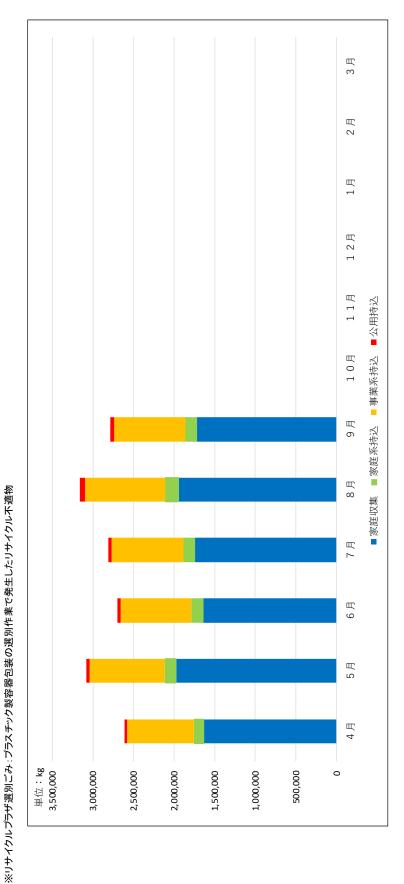
※平成25年度から伊香クリーンプラザの可燃ごみをクリスタルプラザにて処理しています。


令和3年度 クリスタルプラザ可燃ごみ搬入量実績表

資料2

(単位: kg)

Д 4 Д 5 Д 6 Д 6 Д 6 Д 6 Д 6 Д 6 Д 6 Д 6 Д 6	5月		6月		7月	8月	日6	10月	11月	12月	1月	2月	3月	中計	л 2	対前年度比
家庭収集 1,729,000 1,819,300		1,819,30	o	1,772,650	1,797,420	1,946,830	1,696,290	1,666,780	1,817,780	1,728,100	1,737,750	1,410,400	1,787,660	20,909,960	21,212,270	-1.4%
家庭系持込 185,480 192,870 3	192,870		(,)	322,760	142,750	164,000	176,940	158,150	142,620	96,540	45,050	49,210	121,240	1,797,610	2,182,330	-17.6%
事業系持込 899,820 903,930 92	903,930		6	923,000	906,370	932,360	850,270	848,540	901,270	917,700	866,160	733,150	907,980	10,590,550	10,745,820	-1.4%
公用持込 56,700 53,000 66	23,000		39	68,720	51,290	48,980	42,530	34,590	39,530	40,540	16,720	17,400	63,730	533,730	548,110	-2.6%
クリーンプラント選別ごみ 343,900 344,200 387,	344,200		387,	387,480	278,550	267,460	292,630	285,780	260,680	254,260	175,540	130,020	303,040	3,323,540	3,674,070	-9.5%
リサイクルブラザ選別ごみ 12,850 11,970 12.	11,970		12,	12,530	12,640	14,680	15,680	13,210	14,110	14,590	15,460	8,010	14,730	160,460	83,460	92.3%
合計 3,227,750 3,325,270 3,487,140	3,325,270		3,487,	140	3,189,020	3,374,310	3,074,340	3,007,050	3,175,990	3,051,730	2,856,680	2,348,190	3,198,380	37,315,850	38,446,060	-2.9%


※ワリーンプラント選別ごみ:不燃ごみ、粗大ごみの破砕により発生した可燃物 ※リサイクルプラザ選別ごみ:ブラスチック製容器包装の選別作業で発生したリサイクル不適物

クリスタルプラザ可燃ごみ搬入量実績表 令和4年度上半期

資料3

(単位: kg)	対前年度比	%6:0-	-28.5%	-0.8%	-19.1%	-16.6%	4.2%	-4.3%
	R3 (4月~9月)	10,761,490	1,184,800	5,415,750	321,220	1,914,220	80,350	19,677,830
	合計	10,669,040 10,761,490	846,660	5,373,210	259,910	1,597,080	83,690	18,829,590
	3月	0	0	0	0	0	0	0
	2月	0	0	0	0	0	0	0
	1月	0	0	0	0	0	0	0
	12月	0	0	0	0	0	0	0
	11月	0	0	0	0	0	0	0
	10月	0	0	0	0	0	0	0
	9月	1,722,020	142,750	876,330	46,400	250,860	14,620	3,052,980
	8月	1,943,490	166,980	990,500	60,010	252,860	13,850	3,427,690
	7月	1,748,810	133,950	885,770	40,810	212,670	13,370	3,035,380
	6月	1,645,830	140,020	870,080	44,980	284,630	14,490	3,000,030
	5月	1,974,480	140,770	930,700	34,570	294,800	12,550	3,387,870
	4月	1,634,410	122,190	819,830	33,140	301,260	14,810	2,925,640
	A	家庭収集	家庭系持込	事業系持込	公用持込	クリーンプラント選別ごみ	リサイクルプラザ選別ごみ	수計
	項目	₩		持込		ケソーング	リサイクル	

平成24~令和3年度ごみ焼却処理施設運転管理状況

令和3年度	3, 330, 615	359, 406	2,874	547	513	943	942
令和2年度	3, 448, 587	375, 945	2, 664	583	592	934	935
令和元年度	3, 368, 688	381, 168	3, 132	556	520	932	935
平成30年度	3, 420, 953	369, 752	2,682	561	542	931	936
平成29年度	3, 677, 170	354, 943	2, 472	534	528	925	923
平成28年度	3, 461, 437	359, 161	2, 780	508	488	922	927
平成27年度	3, 406, 411	369, 072	2,638	526	464	922	927
平成26年度	3, 356, 043	360, 388	2, 633	470	522	922	923
平成25年度	3, 409, 008	359, 514	3, 262	500	532	920	920
平成24年度	3, 143, 047	324, 715	3, 187	450	456	916	917
単位	kg/月	kg/月	7 7 7 月	Н/Я	H/H	℃ / 平 坯	C / 平均
ш	(海) 湖	灰の量	助燃料量(灯油)	1 号炉焼却実働時間	号炉焼却実働時間	炉内温度	炉内温度
通	7)	海	補助機	1号炉	2号炉	1 号	2 培

令和3年度 ごみ焼却処理施設運転管理状況

月平均	3, 330, 615	359, 407	2, 874	547	513	943	942
。 月	2, 795, 820	304, 690	3, 450	744	134	937	940
2 月	2, 385, 860	262, 290	4, 366	174	296	928	937
1 月	3, 189, 950	367, 110	5, 238	542	547	938	934
12 月	2, 895, 890	293, 640	5, 489	466	464	937	945
11 月	3, 983, 920	398, 970	1,300	720	593	948	942
10 月	2, 669, 590	304, 280	2, 582	651	189	943	943
6 日	4, 127, 060	429, 870	1, 935	707	638	948	947
8 H	3, 287, 990	345, 850	1,879	277	736	948	943
7 月	3, 335, 390	345, 690	1, 163	502	521	946	944
6 月	3, 914, 880	419, 380	1,732	616	597	947	945
5 H	3, 868, 350	420, 420	1, 295	453	744	949	941
4	3, 512, 680	420, 690	4, 059	713	392	945	946
単	kg	kg	ሁ ያላ	Н	Н	ာ့	ၞ
ш	焼 地 量	灰の量	※ 巻 量	劫実働時間	劫実働時間	: 内温度	: 内温度
暦	r t	焼却	華	1号炉焼却実	2号炉焼	1 号 炬	2 号 炬

令和4年度上半期 ごみ焼却処理施設運転管理状況

月平均	3, 335, 065	372, 413	1,933	505	809	947	944
3 月							
2 月							
1 月							
12 月							
11 月							
10 月							
9 月	4, 056, 310	440, 470	1, 139	720	999	953	942
8 月	2, 729, 250	304, 210	1, 784	186	699	948	943
7 月	3, 042, 680	293, 710	2, 505	520	460	947	941
6 月	3, 648, 520	398, 530	1,960	472	715	947	944
5 月	3, 607, 990	398, 780	2, 070	736	422	945	948
4 H	2, 925, 640	398, 780	2, 140	396	715	941	945
単位	kg	kg	٧ ٧ ٣	Н	Н	ာ့	သ
ш	焼 湖 量	灰の量	曹紫紫	炉焼却実働時間	炉焼却実働時間	炉 內 溫 废	炉 內 溫 度
鬥	<i>i</i> t	焼	補助	1号炉	2 号炬	1 持	2 培

令和3年度 排ガス測定分析結果 (下半期分)

採取場所:煙突サンプリングロ

分析項目	単位	法規制値	協定値	炉別測	川定分析約	洁果		備	考
カが な ロ	辛匹	仏 別則 胆	加 足區	1 号 /	炉 2	号	炉	VĦ	77
硫黄酸化物 (Sox)	ppm	50	50	1. 5未満	1.	5未清	荀	測定日: 1号炉は令和3年 2号炉は令和3年 ※硫黄酸化物	E11月18日 K値
窒素酸化物 (Nox)	ppm	250	125	87		87		長浜市14.5	
ばいじん	g∕m³N	0. 15	0. 02	0.007	0), 008			
塩化水素 (HCL)	ppm	430	100	4. 5未満	4.	7未清	苟		
一酸化炭素 (C0)	ppm	100	100	5未満	5	5未満			
ダイオキシン類	ng-TEQ/m ³ N	5	0. 1	0. 0043 0. 0029	0.01			測定分析機関上段が、 (株)日吉 下段が 東京テクニカル・・	

※ng(ナノグラム):質量の単位で10億分の1グラムを示します。

計 量 証 明 書

発行番号 JAF0698-006

発行日 2021年12月22日

MLAP認定番号 N-0049-01 特定計量証明事業 (第03-01号) 株式会社 日

湖北広域行政事務センター クリスタルプラザ 様

〒523-8555 滋賀県近江八幡市北之庄町908番 TEL 0748-32-5001 (直通) FAX 0748-32-4192

計量管理者 築山 (環境計量士)

32-4192 築山直弘

貴依頼による計量の結果を次の通り証明します。

des 10		- 17	- M - A - M - M - M - M - M - M - M - M	nt Ar	湖北広域行政事務センター
採用	以 場 か	「及「	び試業	斗 名	クリスタルプラザ 1号焼却炉 煙突
試	料	採	取	日	2021年11月17日 10:45~14:45
採		取		者	藤本 逸雄 臼井 尚幸
計	量		期	間	2021年11月19日 ~ 2021年12月21日
計	量	の	対	象	排ガス中のダイオキシン類
計	量	の	方	法	JIS K 0311(2020) 排ガス中のダイオキシン類の測定方法

計 量 の 結 果	実測濃度 (ng/m³)	酸素換算濃度 ※ (ng/m³)	毒性等量(TEQ)※ (ng-TEQ/m³)
PCDDs	0, 28	0.75	
PCDFs	0. 032	0. 087	
DL-PCBs	0.0008	0.002	
PCDDs+PCDFs+DL-PCBs (ダイオキシン類)	0. 31	0.84	0.0043

|業務案件名:令和3年度 第108号 クリスタルプラザ ダイオキシン類等測定分析業務

備

考

酸素換算濃度は 酸素 12 % 換算値 です(ダイオキシン類対策特別措置法施行規則第2条)。 酸素実測濃度(平均値)は、 17.7 % です。

表中のm³ は標準状態のガス量 (0℃,101.3kPa)を示します。

※DL-PCBsはダイオキシン類対策特別措置法第2条に定義されたコプラナーPCB(Co-PCBs)と同義です。 ※酸素換算濃度及び毒性等量は計量証明対象外項目です(計量法第107条)。

2

2/2 JAF0698-006 G-0253

湖北広域行政事務センター クリスタルプラザ 1号焼却炉 煙突

2021年11月17日

		m³:標準状態((℃, 101.325kPa)				
		実測濃度	酸素12%換算濃度	試料における	試料における	毒性等価	毒性等量
		Cs	С	定量下限	検出下限	係数	(TEQ)
		ng/m ³	ng/m³	ng/m³	ng/m ³	TEF	ng-TEQ/m³
	1,3,6,8-TeCDD	0.027	0.074	0.0025	0.0007	-	₹3
	1,3,7,9-TeCDD	0.0051	0.014	0.0025	0.0007	ine.	#:
	2,3,7,8-TeCDD	ND	ND	0.0025	0.0007	1	0
	TeCDDs	0.034	0.093	-	296	-	*:
	1,2,3,7,8-PeCDD	ND	ND	0.0009	0.0003	1	0
	PeCDDs	0.032	0.087	*	-	(€	-
PC	1,2,3,4,7,8-HxCDD	ND	ND	0.0031	0.0009	0.1	0
PCDDs	1,2,3,6,7,8-HxCDD	0.0054	0.015	0.0031	0.0009	0.1	0.0015
•	1,2,3,7,8,9-HxCDD	0.0029	0.0079	0.0022	0.0007	0.1	0.00079
	HxCDDs	0.096	0.26	#)	-	18	-
	1,2,3,4,6,7,8-HpCDD	0.037	0.10	0.0021	0.0006	0.01	0.0010
	HpCDDs	0.074	0.20	4 0	-	108	-
	OCDD	0.040	0.11	0.004	0.001	0.0003	0.000033
	Total PCDDs	0.28	0.75	3 4).	-	16	0.003323
	1,2,7,8-TeCDF	ND	ND	0.0022	0.0007	: स	
	2,3,7,8-TeCDF	ND	ND	0.0022	0.0007	0.1	0
	TeCDFs	0.0055	0.015	2 1	-	792	-
	1,2,3,7,8-PeCDF	ND	ND ND	0.0017	0.0005	0.03	0
	2,3,4,7,8-PeCDF	ND	ND ND	0.0016	0.0005	0.3	0
	PeCDFs	0.0056	0.015	9	-	2	-
	1,2,3,4,7,8-HxCDF	ND	ND	0.003	0.001	0.1	0
Þ	1,2,3,6,7,8-HxCDF	ND	ND	0.003	0.001	0.1	0
PCDFs		ND ND	ND ND	0.003	0.001	0.1	0
	1,2,3,7,8,9-HxCDF	0.0038	0.010		0.0008	0.1	0.0010
	2,3,4,6,7,8-HxCDF			0.0028	0.0008	0.1	0,0010
	HxCDFs	0.012	0.033				0
	1,2,3,4,6,7,8-HpCDF	ND	ND	0.0030	0.0009	0.01	
	1,2,3,4,7,8,9-HpCDF	ND	ND	0.004	0.001	0.01	0
	HpCDFs	0.007	0.019				
	OCDF	(0.0019)	(0.0052)	0.0026	0.0008	0.0003	0
	Total PCDFs	0.032	0.087			7 <u>2</u>	0.0010
otal	(PCDDs+PCDFs)	0.31	0.84	i i		4	0.004323
	3,4,4',5-TeCB (#81)	ND	ND	0.0022	0.0007	0.0003	0
	3,3',4,4'-TeCB (#77)	(0.0008)	(0.0022)	0.0026	0.0008	0.0001	0
	3,3',4,4',5-PeCB (#126)	ND	ND	0.006	0.002	0.1	0
	3,3',4,4',5,5'-HxCB (#169)	ND	ND	0.0010	0.0003	0.03	0
	Total non-ortho PCBs	0.0008	0.002	=======================================	1.7		0
U	2',3,4,4',5-PeCB (#123)	ND	ND	0.005	0.001	0.00003	0
1	2,3',4,4',5-PeCB (#118)	ND	ND	0.0022	0.0006	0.00003	0
DL-PCB	2,3,3',4,4'-PeCB (#105)	ND	ND	0.0019	0.0006	0.00003	0
n	2,3,4,4',5-PeCB (#114)	ND	ND	0.003	0.001	0.00003	0
	2,3',4,4',5,5'-HxCB (#167)	ND	ND	0.0015	0.0005	0.00003	0
	2,3,3',4,4',5-HxCB (#156)	ND	ND	0.0025	0.0008	0.00003	0
	2,3,3',4,4',5'-HxCB (#157)	ND	ND	0.0030	0.0009	0.00003	0
	2,3,3',4,4',5,5'-HpCB (#189)	ND	ND	0.0014	0.0004	0.00003	0
	Total mono-ortho PCBs	0	0	-	-	:4:	0
otal	DL-PCBs	0.0008	0.002	-	T++	34.	0
_	PCDDs+PCDFs+DL-PCBs)	0.31	0.84			-	0.0043

- 備考 1. 実測濃度中の括弧付の数値は、検出下限以上定量下限未満の濃度であることを示す。
 - 2. 実測濃度中の"ND"は、検出下限未満であることを示す。
 - 3. 酸素12%換算濃度(C)は、次の式によって算出した。

Γ	C =	21 -	12	× C a	C:	酸素	12	% 換算濃度
	C	21 -	Os	~ Cs	Cs:	実測源	農度	
	(Os =	17.7	%)		Os:	酸素液	農度	

- 4. 毒性等価係数は、世界保健機関(WHO)より2005年に提案され、2006年の Toxicological Sciences に掲載されたもの(WHO-TEF(2006))を適用した。
- 5. 毒性等量は実測濃度が定量下限以上の値はそのまま用い、定量下限未満の値には0(ゼロ)を用い、これにそれぞれ毒性等価係数を乗じて 算出した。
- 6. 2,3,4,6,7,8-HxCDFは、1,2,3,6,8,9-HxCDFと、2,3,4,4',5-PeCB(#114)は、3,3',4,5,5'-PeCB(#127)とクロマトグラム上で分離できないため、それらを含んだ濃度である。

湖北広域行政事務センター クリスタルプラザ 様

発行番号JAF0698-003発行日2021年12月16日

環境計量証明事業(振動登録第6号)

株式会社 日

〒523-8555

滋賀県近江八幡市北之庄町908番地 TEL 0748-32-5001(直通)

FAX 0748-32-4192

ご依頼のありました濃度に係る計量の結果を次の通り証明いたします。

環境計量士

築山直弘

1, 1,2,1	
調査工場事業所名	湖北広域行政事務センター
調査施設名	クリスタルプラザ 1号焼却炉 煙突
所在地	滋賀県長浜市八幡中山町200番地
調査年月日	2021年11月17日
調査時刻	09:00~15:00
測定者氏名	藤本 逸雄 臼井 尚幸

計量(単位	計量結果	基準値	判定	計量方法	
排出ガス量	湿り	m³N/h	89200			JIS Z 8808
	乾き	m³N/h	74900			
排出ガス温度		°C	156			
排出ガス水分量		%	16.0			JIS Z 8808
排出ガス組成	CO2	%	2.7			JIS K 0301
	O2	%	17.6	1		
	CO	%	0.0			
	N2	%	79.7			
ばいじん濃度	測定値	g/m³N	0.002			JIS Z 8808
	酸素換算值 (12%)	g/m³N	0.007	0.02	合	
硫黄酸化物	硫黄酸化物濃度	V/Vppm	1.5未満	50	合	JIS K 0103 附属書JC
	硫黄酸化物量	m³N/h	0.11未満	100	合	
	K値		0.014未満	14.5		
窒素酸化物	測定値	ppm	31			JIS K 0104-8
	酸素換算値 (12%)	ppm	87	125	合	
塩化水素濃度	測定値	mg/m³N	2.7未満			JIS K 0107 附属書A
	酸素換算值 (12%)	mg/m³N	7.1未満			
	測定値	ppm	1.7未満			
	酸素換算値 (12%)	ppm	4.5未満	100	合	
鉄濃度	測定値	mg/m³N	0.05未満			JIS K 0102-57.2
一酸化炭素濃度	連続測定値	ppm	2未満			JIS K 0098-7
	酸素換算值(12%)	ppm	5未満			
酸素濃度	連続測定値	%	17.7			JIS K 0301-6
排出ガス温度	連続測定値	°C	159			JIS Z 8808

測定時、連続運転。

計 量 証 明 書

発行番号 JAF0698-012

発行日 2021年12月22日

MLAP認定番号 N-0049-01 特定計量証明事業 (第03-01号) 株式会社 日

湖北広域行政事務センター クリスタルプラザ 様

〒523-8555 滋賀県近江八幡市北之庄町908番 TEL 0748-32-5001 (直通) FAX 0748-32-4192

計量管理者 築山 直見

(環境計量士)

貴依頼による計量の結果を次の通り証明します。

to H	5 担前	= 77.	び試料	SI. 夕	湖北広域行政事務センター
1 1	X 555 D	1 /	O	770	クリスタルプラザ 2号焼却炉 煙突
試	料	採	取	日	2021年11月18日 10:10~14:10
採		取		者	藤本 逸雄 大塚 丈吾
計	量		期	間	2021年11月19日 ~ 2021年12月21日
計	量	の	対	象	排ガス中のダイオキシン類
計	量	の	方	法	JIS K 0311(2020) 排ガス中のダイオキシン類の測定方法

計 量 の 結 果	実測濃度 (ng/m³)	酸素換算濃度 ※ (ng/m³)	毒性等量(TEQ)※ (ng-TEQ/m³)
PCDDs	0. 51	1. 4	
PCDFs	0.094 0.25		
DL-PCBs	0.012	0. 031	
PCDDs+PCDFs+DL-PCBs (ダイオキシン類)	0. 62	1.6	0.013

業務案件名:令和3年度 第108号 クリスタルプラザ ダイオキシン類等測定分析業務

備

考

酸素換算濃度は 酸素 12 %換算値 です(ダイオキシン類対策特別措置法施行規則第2条)。

表中のm³ は標準状態のガス量 (0℃, 101.3kPa)を示します。

酸素実測濃度(平均値)は、 17.6 % です。

※DL-PCBsはダイオキシン類対策特別措置法第2条に定義されたコプラナーPCB (Co-PCBs) と同義です。

※酸素換算濃度及び毒性等量は計量証明対象外項目です(計量法第107条)。

湖北広域行政事務センター クリスタルプラザ 2号焼却炉 煙突

2021年11月18日

		m³:標準状態(0	℃, 101.325kPa)				
		実測濃度	酸素12%換算濃度	試料における	試料における	毒性等価	毒性等量
		Cs	С	定量下限	検出下限	係数	(TEQ)
		ng/m³	ng/m³	ng/m³	ng/m³	TEF	ng-TEQ/m³
	1,3,6,8-TeCDD	0.045	0.12	0.0025	0.0007	12	=/
	1,3,7,9-TeCDD	0.0091	0.024	0.0025	0.0007	44	27
	2,3,7,8-TeCDD	ND	ND	0.0025	0.0007	1	0
	TeCDDs	0.061	0.16		-	12	= 7.
	1,2,3,7,8-PeCDD	0.0017	0.0045	0.0009	0.0003	1	0.0045
	PeCDDs	0.066	0.17	577,6	-	-2	3 ∀
PC	1,2,3,4,7,8-HxCDD	(0.0019)	(0.0050)	0.0031	0.0009	0.1	0
PCDD	1,2,3,6,7,8-HxCDD	0.0090	0.024	0.0031	0.0009	0.1	0.0024
0,	1,2,3,7,8,9-HxCDD	0.0040	0.011	0.0022	0.0007	0.1	0.0011
	HxCDDs	0.18	0.48	120	.57.	8	<u>=</u> ?
	1,2,3,4,6,7,8-HpCDD	0.063	0.17	0.0020	0.0006	0.01	0.0017
	HpCDDs	0.14	0.37	:=:	2.50	-5	3)
	OCDD	0.064	0.17	0.004	0.001	0.0003	0.000051
	Total PCDDs	0.51	1.4	5 4 5	=		0.009751
	1,2,7,8-TeCDF	ND	ND	0.0022	0.0007		
	2,3,7,8-TeCDF	ND	ND	0.0022	0.0007	0.1	0
	TeCDFs	0.021	0.056		. 	-	=0
	1,2,3,7,8-PeCDF	ND	ND	0.0017	0.0005	0.03	0
	2,3,4,7,8-PeCDF	0.0022	0.0058	0.0016	0.0005	0.3	0.00174
	PeCDFs	0.024	0.064	-	-	-	-
	1,2,3,4,7,8-HxCDF	(0.002)	(0.005)	0.003	0.001	0.1	0
۳	1,2,3,6,7,8-HxCDF	ND ND	ND	0.003	0.001	0.1	0
PCDFs	1,2,3,7,8,9-HxCDF	ND	ND ND	0.004	0.001	0.1	0
ι α'	2,3,4,6,7,8-HxCDF	0.0067	0.018	0.0028	0.0008	0.1	0.0018
	HxCDFs	0.024	0.064	-	-	77	## 6
	1,2,3,4,6,7,8-HpCDF	0.0064	0.017	0.0030	0.0009	0.01	0.00017
	1,2,3,4,7,8,9-HpCDF	(0.002)	(0.005)	0.004	0.001	0.01	0
	HpCDFs	0.022	0.058	-	_	-	=
	OCDF	0.0027	0.0071	0,0026	0.0008	0.0003	0.00000213
	Total PCDFs	0.094	0.25	-	+	#	0,00371213
Total	(PCDDs+PCDFs)	0.61	1.6	-		-	0.01346313
Total	3,4,4',5-TeCB (#81)	(0.0019)	(0.0050)	0.0022	0.0007	0.0003	0
	3,3',4,4'-TeCB (#77)	0.0029	0.0077	0.0026	0.0008	0.0001	0.00000077
	3,3',4,4',5-PeCB (#126)	(0.002)	(0.005)	0.006	0.002	0.1	0
	3,3',4,4',5,5'-HxCB (#169)	ND	ND /	0.0010	0.0003	0.03	0
	Total non-ortho PCBs	0.007	0.018	-	-	-	0.00000077
	2',3,4,4',5-PeCB (#123)	ND	ND ND	0.005	0.001	0.00003	0
DI.	2,3',4,4',5-PeCB (#118)	ND	ND ND	0.0022	0,0006	0.00003	0
DL-PCB:	2,3,3',4,4'-PeCB (#105)	0.0028	0.0074	0.0019	0.0006	0.00003	0.000000222
Bs	2,3,4,4',5-PeCB (#114)	(0.0026		0.003	0.001	0.00003	0
	2,3',4,4',5,5'-HxCB (#167)	ND	ND ND	0.003	0.0005	0.00003	0
	2,3,3',4,4',5-HxCB (#156)	ND ND	ND ND	0.0015	0.0008	0.00003	0
				0.0025	0.0009	0.00003	0
	2,3,3',4,4',5'-HxCB (#157)	ND	ND ND	0.0030	0.0009	0.00003	0
	2,3,3',4,4',5,5'-HpCB (#189)		ND 0.012	- 0.0014	- 0.0004	- 0.00003	0.000000222
Tet 1	Total mono-ortho PCBs	0.005	0.013				0.000000222
-	DL-PCBs	0.012	0.031		-		0.000
rotal (PCDDs+PCDFs+DL-PCBs)	0.62	1.6				0.013

- 備考 1. 実測濃度中の括弧付の数値は、検出下限以上定量下限未満の濃度であることを示す。
 - 2. 実測濃度中の"ND"は、検出下限未満であることを示す。
 - 3. 酸素12%換算濃度(C)は、次の式によって算出した。

C +	21 -	12	× Cs	C: 酸素 12 %換算濃度	
C = 1=	21 -	Os	× C8	Cs: 実測濃度	
(Os =	17.6	%)		Os: 酸素濃度	

- 4. 毒性等価係数は、世界保健機関(WHO)より2005年に提案され、2006年の Toxicological Sciences に掲載されたもの(WHO-TEF(2006))を適用した。
- 5. 毒性等量は実測濃度が定量下限以上の値はそのまま用い、定量下限未満の値には0(ゼロ)を用い、これにそれぞれ毒性等価係数を乗じて 算出した。
- 6. 2,3,4,6,7,8-HxCDFは、1,2,3,6,8,9-HxCDFと、2,3,4,4',5-PeCB(#114)は、3,3',4,5,5'-PeCB(#127)とクロマトグラム上で分離できないため、それらを含んだ濃度である。

湖北広域行政事務センター クリスタルプラザ 様

発行番号
 JAF0698-009
 発行日
 2021年12月16日
 滋賀県環境保全協会指定分析機関環境計量証明事業(濃度登録第6号)
 環境計量証明事業(騒音登録第3号)
 環境計量証明事業(振動登録第6号)
 株式会社 日

〒 5 2 3 - 8 5 5 5

滋賀県近江八幡市北之庄町908番地

TEL 0748-32-5001 (直通)

FAX 0748-32-4192

ご依頼のありました濃度に係る計量の結果を次の通り証明いたします。

環境計量士 築山 直弘

調査工場事業所名	湖北広域行政事務センター
調査施設名	クリスタルプラザ 2号焼却炉 煙突
所在地	滋賀県長浜市八幡中山町200番地
調査年月日	2021年11月18日
調査時刻	09:00~14:30
測定者氏名	藤本 逸雄 大塚 丈吾

計量の	単位	計量結果	基準値	判定	計量方法	
 排出ガス量	湿り	m³N/h	88200			JIS Z 8808
	乾き	m³N/h	74300			
排出ガス温度		°C	152			
排出ガス水分量		%	15.8			JIS Z 8808
排出ガス組成	CO2	%	2.5			JIS K 0301
	O2	%	17.8			
	CO	%	0.0			
	N2	%	79.7			
ばいじん濃度	測定値	g/m³N	0.003			JIS Z 8808
	酸素換算值(12%)	g/m³N	0.008	0.02	合	
硫黄酸化物	硫黄酸化物濃度	V/Vppm	1.5未満	50	合	JIS K 0103 附属書JC
	硫黄酸化物量	m³N/h	0.11未満	100	合	
	K値		0.015未満	14.5		
窒素酸化物	測定値	ppm	33			JIS K 0104-8
	酸素換算值 (12%)	ppm	87	125	合	
塩化水素濃度	測定値	mg/m³N	2.7未満			JIS K 0107 附属書A
	酸素換算値 (12%)	mg/m³N	7.5未満			
	測定値	ppm	1.7未満			
	酸素換算值 (12%)	ppm	4.7未満	100	合	
鉄濃度	測定値	mg/m³N	0.05未満			JIS K 0102-57.2
一酸化炭素濃度	連続測定値	ppm	2未満			JIS K 0098-7
	酸素換算值(12%)	ppm	5未満			
酸素濃度	連続測定値	%	17.6			JIS K 0301-6
排出ガス温度	連続測定値	°C	161			JIS Z 8808

測定時、連続運転。

2022年1月5日

湖北広域行政事務センター 殿

特 定 計 量 証 明 事 業 者 東京テクニカル・サービス株式会社 本社 千葉県浦安市今川四丁目12番38-1号 東京本部 東京都江戸川区西葛西8-20-20 TEL 03-3688-3284

特 定 計 量 証 明 認 定 事 業 所 茨 城 ラ ボ (認定番号 N-0032-01) (登録番号 茨城 第1号) 茨 城 県 稲 敷 市 橋 向 1183-1

計量管理者會田宏彰(第4477号)

1.件 名

令和3年度 第109号 クリスタルプラザ

ダイオキシン類等測定分析業務(クロスチェック)

2.計量の対象

排ガス中のダイオキシン類

•試料採取年月日

2021年11月17日

•対象施設

湖北クリスタルプラザ 1号炉煙突

3.計量の方法

排ガス中のダイオキシン類の測定方法

JIS K 0311 (2020)

4.計量の結果

表 - 1のとおり

5.備 考

湖北広域行政事務センター殿(滋賀県長浜市八幡中山町200

番地)の依頼により計量証明を行ったものです。この結果は当

該試料のみに関するものです。

東京テクニカル・サービス(株)の許可なしに、本報告書の一部のみの複製を禁じます。

排ガス中の ダイオキシン類測定結果

採取日 2021年11月17日

表-1

						湖北クリ	スタルプラ	ザ 1号炉炉	亜突	
			実測濃度			換算濃度	試料(定量下限	こおける 検出下限	毒性等価 係数	※毒性当量
		1.	ng/m^3			ng/m³	ng/m ³	ng/m ³	TEF	ng-TEQ/m ³
	1, 3, 6, 8-TeCDD		0.037			0. 11	0.0031	0.0009	777	77
	1, 3, 7, 9-TeCDD		0.0064			0.019	0.0031	0.0009	90	4 <u>8</u>
	2, 3, 7, 8-TeCDD		ND			ND	0.0031	0.0009	_1	0
- 1	TeCDDs		0.049			0.14	₹ 2	77	20	- 5
_	1, 2, 3, 7, 8-PeCDD		ND			ND	0.0031	0.0009	1	0
P C	PeCDDs		0.060			0. 17	-	-	=	
D	1, 2, 3, 4, 7, 8-HxCDD		ND			ND	0.006	0.002	0.1	0
D	1, 2, 3, 6, 7, 8-HxCDD		0.006			0.017	0.006	0.002	0.1	0.0017
s	1, 2, 3, 7, 8, 9-HxCDD	(0.003)	(0. 0087	0.006	0.002	0.1	0
725	HxCDDs	_	0.11	_		0. 32	2 000	0.000	- 0.01	
	1, 2, 3, 4, 6, 7, 8-HpCDD	_	0. 036			0. 10	0.006	0.002	0.01	0.0010
	HpCDDs	_	0.081	_	_	0. 24	0.010			0, 000045
	OCDD		0.052			0.15	0.010	0.003	0.0003	0.000045
_	Total PCDDs	-	0.36	SEE 25	1	0. 0046	0,0031	0,0009		0.0021
	1, 3, 6, 8-TeCDF		0. 0016			ND	0.0031	0.0009	-	
	1, 2, 7, 8-TeCDF	_	ND ND	-		ND	0.0031	0.0009	0, 1	0
	2, 3, 7, 8-TeCDF	-		-			0.0031	0.0009	0.1	
-	TeCDFs	- /	0. 025	1	1	0. 073	_	0.0009	0.03	0
	1, 2, 3, 7, 8-PeCDF		0.0013)	-	ND	0.0031	0.0009	0.03	0
	2, 3, 4, 7, 8-PeCDF		ND 0.004			0. 070	0.0031	0.0009	0. 0	-
P	PeCDFs	-	0. 024			ND	0.006	0.002	0.1	0
C	1, 2, 3, 4, 7, 8-HxCDF	- /	ND 0.000)	1	0. 0058	0.006	0.002	0.1	. 0
D F	1, 2, 3, 6, 7, 8-HxCDF		0. 002 ND)	(0. 0058 ND	0.006	0, 002	0.1	0
S	1, 2, 3, 7, 8, 9-HxCDF	- (0. 005	- 1	(0.006	0.002	0.1	0
3	2, 3, 4, 6, 7, 8-HxCDF						0.006	0.002	0.1	- 0
	HxCDFs		0.027			0.078	0,006	0, 002	0, 01	0,00017
	1, 2, 3, 4, 6, 7, 8-HpCDF	_	0, 006 ND			0. 017 ND	0.006	0.002	0.01	0,00011
	1, 2, 3, 4, 7, 8, 9-HpCDF				_		0.000	0.002	0.01	20
	HpCDFs	-	0.015		-	0. 044 ND	0.010	0, 003	0, 0003	0
	OCDF Total PCDFs		ND 0. 091	-	The Contract of	0. 26	0.010	0.003	0.0003	0,00017
	Total (PCDDs+PCDFs)		0. 091	2015		1, 3				0.0029
			ND			ND	0,006	0,002	0.0003	0.0025
	3, 4, 4', 5-TeCB(#81) 3, 3', 4, 4'-TeCB(#77)	- /	0. 003)	1	0. 0087	0.006	0.002	0.0003	0
	3, 3', 4, 4', 5-PeCB (#126)		0. 003 ND		(ND	0.006	0.002	0.0001	0
	3, 3', 4, 4', 5, 5' -HxCB(#169)	+	ND	_		ND ND	0.006	0.002	0.03	0
D	Total non-ortho PCBs	-	0.003	Ser. No.		0. 0087	0.000	0.002	0.00	0
L	2', 3, 4, 4', 5-PeCB (#123)	201844	ND		-	ND	0.006	0.002	0.00003	0
Ī	2, 3, 4, 4', 5 PeCB (#123)	- (0.004		1	0. 012) 0.006	0.002	0. 00003	0
Р	2, 3, 4, 4, 5 TeCB (#116) 2, 3, 3', 4, 4' -PeCB (#105)		ND		<u> </u>	ND	0.006	0.002	0.00003	0
С	2, 3, 4, 4', 5-PeCB(#103)		ND	_		ND	0.006	0.002	0.00003	0
В	2, 3, 4, 4', 5 i ecb (#114) 2, 3', 4, 4', 5, 5' -HxCB (#167)		ND			ND	0.006	0.002	0.00003	0
S	2, 3, 4, 4, 5, 5 -HxCB (#157)	-1-	ND			ND	0.006	0.002	0.00003	0
	2, 3, 3', 4, 4', 5'-HxCB(#150)		ND			ND	0.006	0,002	0.00003	0
	2, 3, 3', 4, 4', 5' HXCB(#137) 2, 3, 3', 4, 4', 5, 5' -HpCB(#189)	-1-	ND			ND	0.006	0, 002	0.00003	0
	Total mono-ortho PCBs	MARK.	0.004	100	307	0.012	0.000	0.002	0.00000	0
Tever	Total DL-PCBs		0.004			0. 020	2 2 10 2 12		4	0
-	Total DL TODS	-1-	0.001		-	V1 020	-			※ 0.0029

- 備考 1. 実測濃度中の括弧付の数値は、検出下限以上定量下限未満の濃度であることを示す。
 - 2. 実測濃度中の "ND" は、検出下限未満であることを示す。
 - 3. 酸素12%換算濃度は、次の式によって算出した。

21 - 12 21 - 0s (0s= 17.9 %) 換算濃度=— × 実測濃度

- 4. 毒性等価係数は、WHO (2006) のTEFを適用した。
- 5. 毒性当量は、定量下限未満の実測濃度を0(ゼロ)として算出した。
- 6. Totalダイオキシン類は、換算濃度から各化合物の毒性当量を計算し、その合計の値をもって 有効数字二桁に丸めた。
- 7. 濃度は0℃、101.32 k Paにおける値を示した。
- 8. ※印の付いた項目は計量法上、計量証明対象外である。

2022年1月5日

湖北広域行政事務センター 殿

特 定 計 量 証 明 事 業 者 東京テクニカル・サービス株式会社 本社 千葉県浦安市今川四丁 目12番38-1号 東京本部 東京都江戸川区西葛西8=20-20 TEL 03-3688-3284

特 定 計 量 証 明 認 定 事 業 所 茨 城 ラ ボ (認 定 番 号 N-0032-01) (登録番号 茨城 第 1 号) 茨 城 県 稲 敷 市 橋 向 1183-1

計量管理者會田宏彰第4477号)

1.件 名

令和3年度 第109号 クリスタルプラザ

ダイオキシン類等測定分析業務(クロスチェック)

2.計量の対象

排ガス中のダイオキシン類

•試料採取年月日

2021年11月18日

•対 象 施 設

湖北クリスタルプラザ 2号炉煙突

3.計量の方法

排ガス中のダイオキシン類の測定方法

JIS K 0311 (2020)

4.計量の結果

表 - 1のとおり

5.備 考

湖北広域行政事務センター殿(滋賀県長浜市八幡中山町200番地)の依頼により計量証明を行ったものです。この結果は当

該試料のみに関するものです。

東京テクニカル・サービス(株)の許可なしに、本報告書の一部のみの複製を禁じます。

排ガス中の ダイオキシン類測定結果

採取日 2021年11月18日

分析日 2021年12月17日

表- 1

Sample No. 3593

	11 // 17 // 17 // 1303					湖北ク	リフ	スタルプラ-	ザ 2号炉炉	型突	
			実測濃度			[※] 換算濃度		試料に 定量下限	おける 検出 下限	毒性等価 係数	※毒性当量
			ng/m³			ng/m³		ng/m³	ng/m³	TEF	ng-TEQ/m ³
T	1, 3, 6, 8-TeCDD	_	0, 060		_	0.17	_	0. 0029	0.0009	9	-
H	1, 3, 7, 9-TeCDD		0.010			0. 029		0.0029	0. 0009	-	π.
ı	2, 3, 7, 8-TeCDD		ND			ND		0.0029	0. 0009	1	0
ı	TeCDDs		0, 087			0, 25		+:	-	-	-
ı	1, 2, 3, 7, 8-PeCDD	(0.0017	((0.0049)	0.0029	0,0009	1	0
P	PeCDDs		0. 12			0.35		-		-	81
C	1, 2, 3, 4, 7, 8-HxCDD		ND			ND		0.006	0.002	0.1	0
ם מ	1, 2, 3, 6, 7, 8-HxCDD		0.010			0.029		0.006	0, 002	0.1	0.0029
s	1, 2, 3, 7, 8, 9-HxCDD	(0.003)	(0.0087)	0.006	0.002	0.1	0
٦ [HxCDDs		0.18			0. 52		#	1 1		Z.(
	1, 2, 3, 4, 6, 7, 8-HpCDD		0.068			0.20		0.006	0.002	0, 01	0.0020
	HpCDDs		0.15			0.44		*		· ·	-
	OCDD		0.071			0. 21		0.010	0.003	0.0003	0. 000063
	Total PCDDs		0.60	11/4		1.8	NY .		FILE		0.0050
	1, 3, 6, 8-TeCDF	(0.0019)	(0.0055)	0.0029	0.0009	2.1	**
	1, 2, 7, 8-TeCDF		ND			ND		0.0029	0.0009	-	57
	2, 3, 7, 8-TeCDF	(0.0010)	(0.0029)	0.0029	0.0009	0.1	0
L	TeCDFs		0, 035			0.10		ж.	;+:	-	
	1, 2, 3, 7, 8-PeCDF	(0.0010)	(0.0029)	0.0029	0.0009	a 0.03	0
	2, 3, 4, 7, 8-PeCDF	(0.0018)	(0.0052)	0.0029	0.0009	0.3	0
p [PeCDFs		0.045			0.13		#	-	-	÷
: [1, 2, 3, 4, 7, 8-HxCDF	(0.002)	(0.0058)	0.006	0,002	0.1	0
	1, 2, 3, 6, 7, 8-HxCDF	(0.003)	(0.0087)	0, 006	0.002	0.1	0
F	1, 2, 3, 7, 8, 9-HxCDF		ND			ND		0.006	0.002	0.1	0
s	2, 3, 4, 6, 7, 8-HxCDF	(0.005)	(0.015)	0, 006	0.002	0.1	0
	HxCDFs		0.042			0.12		*	1 -	===	
Γ	1, 2, 3, 4, 6, 7, 8-HpCDF		0.009			0.026		0.006	0.002	0.01	0.00026
Ī	1, 2, 3, 4, 7, 8, 9-HpCDF	(0.002)	(0.0058)	0, 006	0.002	0.01	0
	HpCDFs		0.024			0,070		-		→	
Ī	OCDF		ND			ND		0.010	0.003	0.0003	0
	Total PCDFs		0.15			0.42	30	31/12/13			0.00026
TRU	Total (PCDDs+PCDFs)		0.75			2.2		CON (4) 11	NESTE	1 (1-1/2)	0. 0052
Т	3, 4, 4', 5-TeCB(#81)		ND			ND	ij	0.006	0.002	0.0003	0
	3, 3', 4, 4' -TeCB(#77)	(0.003)	(0.0087)	0.006	0.002	0. 0001	0
İ	3, 3', 4, 4', 5-PeCB(#126)	(0.003)	(0.0087)	0.006	0.002	0.1	0
İ	3, 3', 4, 4', 5, 5' -HxCB (#169)		ND			ND		0, 006	0.002	0.03	0
	Total non-ortho PCBs		0.006		536	0.017	180	INCHES		500 SH(6)	0
- 1	2', 3, 4, 4', 5-PeCB(#123)		ND			ND		0.006	0,002	0.00003	0
<u> </u>	2, 3', 4, 4', 5-PeCB(#118)	(0.003)	(0.0087)	0.006	0,002	0.00003	0
	2, 3, 3', 4, 4'-PeCB(#105)		ND			ND		0.006	0.002	0.00003	0
	2, 3, 4, 4', 5-PeCB(#114)		ND			ND		0.006	0.002	0, 00003	0
S E	2, 3', 4, 4', 5, 5' -HxCB (#167)		ND			ND		0.006	0, 002	0. 00003	0
1	2, 3, 3', 4, 4', 5-HxCB (#156)		ND			ND		0.006	0.002	0.00003	0
-	2, 3, 3', 4, 4', 5' -HxCB (#157)		ND			ND		0.006	0.002	0, 00003	0
	2, 3, 3', 4, 4', 5, 5' -HpCB (#189)		ND			ND		0.006	0.002	0, 00003	0
	Total mono-ortho PCBs	IN OR	0.003	No.	100	0.0087	1	FIL YZENIE	NO SA	(0) =X (1)	0
ħ	TOTAL MODIO-OFTED FEDS						ACCRECATE VALUE OF THE PARTY.		Commence of the last of the la	The second secon	And in case of the last of the
283	Total DL-PCBs		0.009	0100		0.026		2071		/ (+ 100	0

- 備考 1. 実測濃度中の括弧付の数値は、検出下限以上定量下限未満の濃度であることを示す。
 - 2. 実測濃度中の "ND" は、検出下限未満であることを示す。
 - 3. 酸素12%換算濃度は、次の式によって算出した。

(0s= 17.9 %)

- 4. 毒性等価係数は、WHO (2006) のTEFを適用した。
- 5. 毒性当量は、定量下限未満の実測濃度を0(ゼロ)として算出した。
- 6. Totalダイオキシン類は、換算濃度から各化合物の毒性当量を計算し、その合計の値をもって 有効数字二桁に丸めた。
- 7. 濃度は0℃、101.32 k Paにおける値を示した。
- 8. ※印の付いた項目は計量法上、計量証明対象外である。

資料8

令和4年度 排ガス測定分析結果 (上半期分)

採取場所:煙突サンプリングロ

分析項目	単位	法規制値	協定値		加定分析系 定 2	吉果 号	炉	備	考
硫黄酸化物 (Sox)	ppm	50	50	1.5未満		5未満		測定日: 1号炉は令和 2号炉は令和 ※硫黄酸化:	4年6月9日 物K値
窒素酸化物 (Nox)	ppm	250	125	90		82		長浜市14.	5
ばいじん	g∕m ³ N	0. 15	0. 02	0.001未満	ĵ O). 005			
塩化水素 (HCL)	ppm	430	100	7. 7	5.	1未満	ĵ		
一酸化炭素 (CO)	ppm	100	100	6未満	5	未満			
ダイオキシン類		5	0. 1	0. 015 0. 0025	0.00			測定分析機 上段が ㈱日吉 下段が ㈱近畿分析セ	

※ng(ナノグラム):質量の単位で10億分の1グラムを示します。

計 量 証 明 書

発行番号 JBF0422-006

発行日 2022年7月12日

MLAP認定番号 N-0049-01 特定計量証明事業 (第03-01号) 株式会社 日 吉

湖北広域行政事務センター クリスタルプラザ 様

〒523-8555 滋賀県近江八幡市北之庄町908番 TEL 0748-32-5001 (直通) FAX 0748-32-4192

計量管理者

京軍官<u>姓</u>名 奥長 正 (環境計量士)

貴依頼による計量の結果を次の通り証明します。

The second secon	
採取場所及び試料名	湖北広域行政事務センター
休 取 場 別 及 U 武 科 名	クリスタルプラザ 1号焼却炉 煙突
試 料 採 取 日	2022年6月8日 10:50~14:50
採 取 者	藤本 逸雄 大塚 丈吾
計量期間	2022年6月10日 ~ 2022年7月11日
計 量 の 対 象	排ガス中のダイオキシン類
計量の方法	JIS K 0311(2020) 排ガス中のダイオキシン類の測定方法

計 量 の 結 果	実測濃度 (ng/m³)	酸素換算濃度 ※ (ng/m³)	毒性等量(TEQ)※ (ng-TEQ/m³)
PCDDs	0. 38	0.38 1.2	
PCDFs	0. 12	0. 37	
DL-PCBs	0.010		
PCDDs+PCDFs+DL-PCBs (ダイオキシン類)	0. 50	1.6	0. 015

業務案件名:令和4年度 第98号 クリスタルプラザ ダイオキシン類等測定分析業務

備

考

酸素換算濃度は 酸素 12 %換算値 です(ダイオキシン類対策特別措置法施行規則第2条)。 酸素実測濃度(平均値)は、 18.1 % です。

表中のm³ は標準状態のガス量 (0℃, 101. 3kPa)を示します。

※DL-PCBsはダイオキシン類対策特別措置法第2条に定義されたコプラナーPCB(Co-PCBs)と同義です。

※酸素換算濃度及び毒性等量は計量証明対象外項目です(計量法第107条)。

2/2 JBF0422-006 G-0080

湖北広域行政事務センター クリスタルプラザ 1号焼却炉 煙突

2022年6月8日

			°C, 101.325kPa)	a bolatic in the	d halat	= 1 d &d - 1	ploy (a) fala 100
		実測濃度	酸素12%換算濃度	試料における	試料における	毒性等価	毒性等量
		Cs	C	定量下限	検出下限	係数	(TEQ)
		ng/m³	ng/m³	ng/m³	ng/m³	TEF	ng-TEQ/m ³
	1,3,6,8-TeCDD	0.030	0.093	0.0024	0.0007	1.50	₹.
	1,3,7,9-TeCDD	0.0074	0.023	0.0024	0.0007	1,50	5 .
	2,3,7,8-TeCDD	ND	ND	0.0024	0.0007	1	0
	TeCDDs	0.041	0.13	-	==	15	- 7 1
	1,2,3,7,8-PeCDD	0.0014	0.0043	0.0009	0.0003	1	0.0043
	PeCDDs	0.067	0.21	i÷:	150	15	2/
PCDDs	1,2,3,4,7,8-HxCDD	ND	ND	0.0030	0.0009	0.1	0
DDs	1,2,3,6,7,8-HxCDD	0.0076	0.024	0.0031	0.0009	0.1	0.0024
	1,2,3,7,8,9-HxCDD	0.0032	0.0099	0.0022	0.0007	0.1	0.00099
	HxCDDs	0.12	0.37		*	-	
	1,2,3,4,6,7,8-HpCDD	0.042	0.13	0.0020	0.0006	0.01	0.0013
	HpCDDs	0.091	0.28	-	5 4 6		
	OCDD	0.056	0.17	0.004	0.001	0.0003	0.000051
	Total PCDDs	0.38	1.2			*	0.009041
	1,2,7,8-TeCDF	ND	ND	0.0022	0.0007	÷	
	2,3,7,8-TeCDF	(0.0010)	(0.0031)	0.0022	0.0007	0.1	0
	TeCDFs	0.024	0.074		(#E	-	H2.
	1,2,3,7,8-PeCDF	0.0020	0.0062	0.0016	0.0005	0.03	0.000186
	2,3,4,7,8-PeCDF	0.0028	0.0087	0.0016	0.0005	0.3	0.00261
	PeCDFs	0.039	0.12	-	78	÷ .	-
	1,2,3,4,7,8-HxCDF	(0.0018)	(0.0056)	0.0031	0.0009	0.1	0
PC	1,2,3,6,7,8-HxCDF	0.003	0.009	0.003	0.001	0.1	0.00090
	1,2,3,7,8,9-HxCDF	ND	ND	0.004	0.001	0.1	0
	2,3,4,6,7,8-HxCDF	0.0059	0.018	0.0027	0.0008	0.1	0.0018
	HxCDFs	0.035	0.11	(2)	74	=	Tille 1
	1,2,3,4,6,7,8-HpCDF	0.0053	0.016	0.0030	0.0009	0.01	0.00016
	1,2,3,4,7,8,9-HpCDF	ND	ND	0.004	0.001	0.01	0
	HpCDFs	0.014	0.043	~	72		223
	OCDF	0.0034	0.011	0.0025	0.0008	0.0003	0.0000033
	Total PCDFs	0.12	0.37		7年	- 51	0.0056593
otal	(PCDDs+PCDFs)	0.49	1.5	<u></u>	9 <u>2</u>	2.	0.0147003
	3,4,4',5-TeCB (#81)	(0.0016)		0.0022	0,0007	0.0003	0
	3,3',4,4'-TeCB (#77)	(0.0018		0.0026	0.0008	0.0001	0
	3,3',4,4',5-PeCB (#126)	ND	ND	0.006	0.002	0.1	0
	3,3',4,4',5,5'-HxCB (#169)	ND	ND	0.0010	0.0003	0.03	0
	Total non-ortho PCBs	0.0034	0.011		15	-	0
	2',3,4,4',5-PeCB (#123)	ND	ND	0.005	0.001	0.00003	0
\circ	2,3',4,4',5-PeCB (#118)	0.0028	0.0087	0.0021	0.0006	0.00003	0.000000261
-PC	2,3,3',4,4'-PeCB (#105)	(0.0015)		0.0018	0.0005	0.00003	0
	2,3,4,4',5-PeCB (#114)	(0.0013	(0.004)	0.003	0.001	0.00003	0
	2,3',4,4',5,5'-HxCB (#167)	ND	ND	0.003	0.0004	0.00003	0
	2,3,3',4,4',5-HxCB (#156)	(0.0008)		0.0015	0.0007	0.00003	0
				0.0025	0.0007	0.00003	0
	2,3,3',4,4',5'-HxCB (#157)	ND	ND		1	0.00003	0
	2,3,3',4,4',5,5'-HpCB (#189)		ND 0.033	0.0013	0.0004	- 0.00003	0.000000261
	Total mono-ortho PCBs	0.007	0.022	-	_	-74	0.000000201
,	DL-PCBs	0.010	0.031	-	÷	-	0.000000261

- 備考 1. 実測濃度中の括弧付の数値は、検出下限以上定量下限未満の濃度であることを示す。
 - 2. 実測濃度中の"ND"は、検出下限未満であることを示す。
 - 3. 酸素12%換算濃度(C)は、次の式によって算出した。

Г	at property		Щ 0 / С в		and the analysis of the fell wills who
-	C -	21 -	_ 12	× Cs	C: 酸素 12 %換算濃度
1	C - =	21 -	Os	X Cs	Cs: 実測濃度
	(Os =	18.1	%)		Os: 酸素濃度

- 4. 毒性等価係数は、世界保健機関(WHO)より2005年に提案され、2006年の Toxicological Sciences に掲載されたもの(WHO-TEF(2006))を 適用した。
- 5. 毒性等量は実測濃度が定量下限以上の値はそのまま用い、定量下限未満の値には0(ゼロ)を用い、これにそれぞれ毒性等価係数を乗じて 算出した。
- 6. 2,3,4,6,7,8-HxCDFは、1,2,3,6,8,9-HxCDFと、2,3,4,4',5-PeCB(#114)は、3,3',4,5,5'-PeCB(#127)とクロマトグラム上で分離できないため、それらを含んだ濃度である。

湖北広域行政事務センター クリスタルプラザ 様

JBF0422-003 発行番号 2022年7月6日 滋賀県環境保全協会指定分析機関 環境計量証明事業(濃度登録第6号) 環境計量証明事業(騒音登録第3号) 環境計量証明事業(振動登録第6号)

株式会社 日

〒523-8555 滋賀県近江八幡市北之庄町908番地 TEL 0748-32-5001 (直通)

声。

FAX 0748-32-4192

ご依頼のありました濃度に係る計量の結果を次の通り証明いたします。

環境計量士 吉田和弘

調査工場事業所名	湖北広域行政事務センター
調査施設名	クリスタルプラザ 1号焼却炉 煙突
所在地	滋賀県長浜市八幡中山町200番地
調査年月日	2022年6月8日
調査時刻	09:00~15:30
測定者氏名	藤本 逸雄 大塚 丈吾

計量の対象		計量結果	基準値	判定	計量方法
湿り	m³N/h	85900			JIS Z 8808
乾き	m³N/h	72600			
	°C	154			
	%	15.5			JIS Z 8808
CO2	%	2.9			JIS K 0301
O2	%	18.2			
CO	%	0.0			
N2	%	78.9			
測定値	g/m³N	0.001未満			JIS Z 8808
酸素換算值 (12%)	g/m³N	0.001未満	0.02	合	
硫黄酸化物濃度	V/Vppm	1.5未満	50	合	JIS K 0103 附属書JC
硫黄酸化物量	m³N/h	0.10未満	100	合	
K値		0.014未満	14.5		
測定値	ppm	26			JIS K 0104-8
酸素換算値 (12%)	ppm	90	125	合	
測定値	mg/m³N	4.1			JIS K 0107 附属書A
酸素換算値 (12%)	mg/m³N	12			
測定値	ppm	2.5			
酸素換算值(12%)	ppm	7.7	100	合	
測定値	μ g/m ³ N	0.5未満			環境省告示第94号
酸素換算值(12%)	μg/m3N	1.6未満	50	合	
測定値	μg/m3N	0.5未満			
酸素換算値(12%)	μg/m3N	1.6未満	l		
測定値	μg/m3N	0.05未満			
酸素換算值(12%)	μ g/m3N	0.16未満			
測定值	mg/m³N	0.05未満			JIS K 0102-57.2
連続測定値	ppm	2未満			JIS K 0098-7
酸素換算值(12%)	ppm	6未満			
連続測定値	%	18.1			JIS K 0301-6
連続測定値	°C	159			JIS Z 8808
	湿む	 湿り 前3N/h 前3N/h がこ C (C) (C) (C) (C) (C) (D) (R) 	 湿り	 湿り	で

測定時、連続運転。

計 量 証 明 書

発行番号 JBF0422-012

発行日 2022年7月12日

MLAP認定番号 N-0049-01 特定計量証明事業 (第03-01号) 株式会社 日 吉

湖北広域行政事務センター クリスタルプラザ 様

〒523-8555 滋賀県近江八幡市北之庄町908番 TEL 0748-32-5001 (直通) FAX 0748-32-4192

計量管理者(環境計量士)

奥長 正

E E

貴依頼による計量の結果を次の通り証明します。

板板相配及形料			± 4€ '97	el &	湖北広域行政事務センター				
採り	採取場所及び試料名				クリスタルプラザ 2号焼却炉 煙突				
試	料	採	取	日	2022年6月9日 10:10~14:10				
採		取		者	藤本 逸雄 大塚 丈吾				
計	量		期	間	2022年6月10日 ~ 2022年7月11日				
計	量	の	対	象	排ガス中のダイオキシン類				
計	量	の	方	法	JIS K 0311(2020) 排ガス中のダイオキシン類の測定方法				

計 量 の 結 果	実測濃度 (ng/m³)	酸素換算濃度 ※ (ng/m³)	毒性等量(TEQ)※ (ng-TEQ/m³)		
PCDDs	0.44				
PCDFs	0. 10	0. 10 0. 27			
DL-PCBs	0. 0023	0.0060			
PCDDs+PCDFs+DL-PCBs (ダイオキシン類)	0. 55	1.5	0. 0083		

業務案件名:令和4年度 第98号 クリスタルプラザ ダイオキシン類等測定分析業務

備

考

酸素換算濃度は 酸素 12 % 換算値 です (ダイオキシン類対策特別措置法施行規則第2条)。

表中のm³ は標準状態のガス量 (0℃,101.3kPa)を示します。

酸素実測濃度(平均値)は、 17.7 % です。

※DL-PCBsはダイオキシン類対策特別措置法第2条に定義されたコプラナーPCB(Co-PCBs)と同義です。

※酸素換算濃度及び毒性等量は計量証明対象外項目です(計量法第107条)。

湖北広域行政事務センター クリスタルプラザ 2号焼却炉 煙突

2022年6月9日

	m³:標準状態(0	°C, 101.325kPa)				
	実測濃度	酸素12%換算濃度	試料における	試料における	毒性等価	毒性等量
	Cs	С	定量下限	検出下限	係数	(TEQ)
	ng/m³	ng/m³	ng/m³	ng/m³	TEF	ng-TEQ/m ³
1,3,6,8-TeCDD	0.039	0.11	0.0023	0.0007	120	-
1,3,7,9-TeCDD	0.0080	0.022	0.0023	0.0007	~	_
2,3,7,8-TeCDD	ND	ND	0.0023	0.0007	1	0
TeCDDs	0.050	0.14		-	~ ·	=
1,2,3,7,8-PeCDD	ND	ND	0.0008	0.0003	1	0
PeCDDs	0.080	0.22		_ <u>@</u>	-	=
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	ND	ND	0.0028	0.0009	0.1	0
1,2,3,6,7,8-HxCDD	0.0086	0.023	0.0029	0.0009	0.1	0.0023
1,2,3,7,8,9-HxCDD	0.0031	0.0085	0.0021	0.0006	0.1	0.00085
HxCDDs	0.14	0.38	=	1777		=
1,2,3,4,6,7,8-HpCDD	0.054	0.15	0.0019	0.0006	0.01	0.0015
HpCDDs	0.11	0.30	-		_:=	+/-
OCDD	0.061	0.17	0.004	0.001	0.0003	0.000051
Total PCDDs	0.44	1.2	. 1	177	(%	0.004701
1,2,7,8-TeCDF	ND	ND	0.0021	0.0006	us.	= ./.
2,3,7,8-TeCDF	ND	ND	0.0021	0.0006	0.1	0
TeCDFs	0.019	0.052	-			## E
1,2,3,7,8-PeCDF	(0.0011)	(0.0030)	0.0016	0.0005	0.03	0
2,3,4,7,8-PeCDF	0.0023	0.0063	0.0015	0.0004	0.3	0.00189
PeCDFs	0.031	0.085	-		5 5	3 2
1,2,3,4,7,8-HxCDF	ND	ND	0.0030	0.0009	0.1	0
1,2,3,6,7,8-HxCDF	(0.0024)	(0.0065)	0.0031	0.0009	0.1	0
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND	ND	0.004	0.001	0.1	0
2,3,4,6,7,8-HxCDF	0.0056	0.015	0.0026	0.0008	0.1	0.0015
HxCDFs	0.030	0.082	-	3+:	-	(#)
1,2,3,4,6,7,8-HpCDF	0.0058	0.016	0.0028	0.0008	0.01	0.00016
1,2,3,4,7,8,9-HpCDF	(0.002)	(0.005)	0.004	0.001	0.01	0
HpCDFs	0.017	0.046	-	766	-	340
OCDF	0.0038	0.010	0.0024	0.0007	0.0003	0.0000030
Total PCDFs	0.10	0.27	144	14	_	0.0035530
tal (PCDDs+PCDFs)	0.54	1.5	-	72	-	0.0082540
3,4,4',5-TeCB (#81)	(0.0014)	(0.0038)	0.0021	0.0006	0.0003	0
3,3',4,4'-TeCB (#77)	(0.0010)	(0.0027)	0.0025	0.0007	0.0001	0
3,3',4,4',5-PeCB (#126)	ND	ND	0.005	0.002	0.1	0
3,3',4,4',5,5'-HxCB (#169)	ND	ND	0.0010	0.0003	0.03	0
Total non-ortho PCBs	0.0023	0.0060	2	72	-	0
2'.3 4.4'.5-PeCB (#123)	ND	ND	0.004	0.001	0.00003	0
2,3',4,4',5-PeCB (#118) 2,3,3',4,4'-PeCB (#105)	ND	ND	0.0020	0.0006	0.00003	0
2,3,3',4,4'-PeCB (#105)	ND	ND	0.0017	0.0005	0.00003	0
2,3,4,4',5-PeCB (#114)	ND	ND	0.003	0.001	0.00003	0
2,3',4,4',5,5'-HxCB (#167)	ND	ND	0.0014	0.0004	0.00003	0
2,3,3',4,4',5-HxCB (#156)	ND ND	ND	0.0024	0.0007	0.00003	0
2,3,3',4,4',5'-HxCB (#157)	ND ND	ND ND	0.0024	0.0008	0.00003	0
2,3,3',4,4',5,5'-HpCB (#189)	1	ND ND	0.0023	0.0004	0.00003	0
Total mono-ortho PCBs	0	0	0.0013	-	-	0
		0.0060		-	-	0
otal DL-PCBs	0.0023	0.0000		_	50	0.0083

- 備考 1. 実測濃度中の括弧付の数値は、検出下限以上定量下限未満の濃度であることを示す。
 - 2. 実測濃度中の"ND"は、検出下限未満であることを示す。
 - 3. 酸素12%換算濃度(C)は、次の式によって算出した。

C -	21 -	12	V.C.		酸素		%換算濃度
' -	21 -	Os	× C8	Cs:	実測》	農度	
(Os =	17.7	%)		Os:	酸素液	農度	

- 4. 毒性等価係数は、世界保健機関(WHO)より2005年に提案され、2006年の Toxicological Sciences に掲載されたもの(WHO-TEF(2006))を 適用した。
- 5. 毒性等量は実測濃度が定量下限以上の値はそのまま用い、定量下限未満の値には0(ゼロ)を用い、これにそれぞれ毒性等価係数を乗じて
- 5. 各任守里は美剛優及が足量下版以上の他はそのよよ用す、足量下版不調の他には30(ピラを用す、これのによりは14)は、5.3 (4.5,7.8-HxCDFは、1,2,3,6,8,9-HxCDFと、2,3,4,4',5-PeCB(#114)は、3,3',4,5,5'-PeCB(#127)とクロマトグラム上で分離できないため、それらを含んだ濃度である。

湖北広域行政事務センター クリスタルプラザ 様

JBF0422-009 発行番号 2022年7月6日 発行日 滋賀県環境保全協会指定分析機関 環境計量証明事業 (濃度登録第6号) 環境計量証明事業 (騒音登録第3号) 環境計量証明事業 (振動登録第6号) 株式会社 日 吉

〒523-8555

滋賀県近江八幡市北之庄町908番地

TEL 0748-32-5001 (直通)

FAX 0748-32-4192

ご依頼のありました濃度に係る計量の結果を次の通り証明いたします。

	環境計量士	吉	田	和	亚
7	_				
ī	煙突				

調査工場事業所名	湖北広域行政事務センター	
調査施設名	クリスタルプラザ 2号焼却炉 煙突	
所在地	滋賀県長浜市八幡中山町200番地	
調査年月日	2022年6月9日	
調査時刻	09:00~15:00	
測定者氏名	藤本 逸雄 大塚 丈吾	

計量の	単位	計量結果	基準値	判定	計量方法	
排出ガス量	湿り	m ³ N/h	88300			JIS Z 8808
	乾き	m³N/h	72200			
排出ガス温度		°C	161			
排出ガス水分量		%	18.2		8	JIS Z 8808
排出ガス組成	CO2	%	2.6			JIS K 0301
	O2	%	18.0			
	CO	%	0.0			
	N2	%	79.4			
ばいじん濃度	測定値	g/m³N	0.001			JIS Z 8808
	酸素換算值 (12%)	g/m³N	0.005	0.02	合	
硫黄酸化物	硫黄酸化物濃度	V/Vppm	1.5未満	50	合	JIS K 0103 附属書JC
	硫黄酸化物量	m³N/h	0.10未満	110	合	
	K値		0.014未満	14.5		
窒素酸化物	測定値	ppm	29			JIS K 0104-8
	酸素換算值 (12%)	ppm	82	125	合	
塩化水素濃度	測定値	mg/m³N	2.8未満			JIS K 0107 附属書A
	酸素換算值 (12%)	mg/m³N	8.4未満			
	測定値	ppm	1.7未満			
	酸素換算值 (12%)	ppm	5.1未満	100	合	
全水銀濃度	測定値	μ g/m 3 N	0.5未満			環境省告示第94号
	酸素換算値 (12%)	μg/m3N	1.5未満	50	合	
(ガス状水銀濃度)	測定値	μg/m3N	0.5未満			
	酸素換算值 (12%)	μg/m3N	1.5未満			
(粒子状水銀濃度)	測定値	μg/m3N	0.05未満			
	酸素換算值 (12%)	μg/m3N	0.15未満			
鉄濃度	測定値	mg/m³N	0.05未満			JIS K 0102-57.2
一酸化炭素濃度	連続測定値	ppm	2未満			JIS K 0098-7
	酸素換算值(12%)	ppm	5未満			
酸素濃度	連続測定値	%	17.7			JIS K 0301-6
排出ガス温度	連続測定値	°C	162			JIS Z 8808
测点性 连续连						

測定時、連続運転。

=526-0021

住 所:滋賀県長浜市八幡中山町200番地

名: 湖北広域行政事務センター管理者 松居 雅人

属:クリスタルプラザ 御中 所

話: 0749-62-7141 FAX:0749-63-5699

ご依頼を受けました試料の計量の結果を 次の通り証明いたします。

発行番号 頁 数 発行年月日 P22-1661-6D6. 003 (1/2)2022年7月6日

濃 度 計 量 証 明 書

〒520-**3024** 滋賀県栗東市小柿七丁目9番1号 TEL 077-514-7088 FAX 077-514-7188 株式会社 近畿 分标センター 西海南紫所 認定番号:N-0017-02、登録番号:滋賀県第21-01号

> 吉田 計量管理者

(登録番号:濃度 第6769号♪

件 名 令和4年度 第99号 クリスタルプラザダイオキシン類等測定分析業務(クロスチェック)

試料名(計量の対象) 1...

1号焼却炉 煙突サンプリング孔

2 試料の採取条件(受領条件)等

The Hard I	- 1/1/-1////	120121111					
受領方法	採取	採	取	条	件	備	考
年月日	2022/06/08	天候(当日)	曇	気圧(hPa)	1001		
採取者	林靖	天候(前日)	曇	開始時刻	10:50		
	三島	気温 (℃)	21. 0	終了時刻	14:50		
	- 	=	. ==	556	=		

(ダイオキシン類分析結果の詳細は別紙に示す) 3 計 量 結 里

計量の対象	細目		計量の結果	C/11/ / /	計量の方法
ダイオキシン類	毒性等量※	ng-TEQ/m ³	0.0025		II E V / II
タイオヤンノ類	母任守里公	ng-1rQ/m	0. 0025		一 亚式11年於理点会第67号
(.1. ==)					平成11年総理府令第67号
(内訳)					ず イオキシン類対策特別措置法
Total (PCDDs+PCDFs)	酸素換算濃度		1. 2		施行規則 第2条-1
	毒性等量※	ng-TEQ/m ³	0. 00254		【JIS K 0311:2020 排ガス
Total DL-PCBs	酸素換算濃度	ng/m ³	0. 21		中のダイオキシン類の測定方法)
	毒性等量※	ng-TEQ/m ³	0. 00000825		
-以下余白-					
VAL 4	111111111111	-to let Arke till 1.2	14- 7 m /de 1-1 c	Aller and the	

- 注) 1 有効数字桁数はダイオキシン類内訳の毒性等量が3桁、その他は2桁です。
- 注) 2 DL-PCBsはダイオキシン類対策特別措置法第2条に定義されるCo-PCBs(コプラナーポリ塩化ビフェニル)と同義です。
- 注)3 ※印の項目は計量法107条の対象となる証明事業には該当していません。
- 注)4 各単位のm³は標準状態 (0℃, 101.32kPa) のガス量を示しています。
- 注)5酸素換算濃度計算式

 $C = (21-12) / (21-0s) \times Cs$ 0s:実測酸素濃度 Cs:実測濃度 C:酸素換算濃度

- 注)6 毒性等価係数はWHO/IPCS (2006) のTEFを適用した。
- 注)7 毒性等量は定量下限未満の実測濃度を0(tin)として算出した。
- 注)8 発行者の書面による承諾なしに本計量証明書の一部分だけを複製することは禁止しています。

事業登録:環境計量証明(滋賀県特定濃度21-01号・濃度第1号・振動第1号・騒音第5号) 土壌汚染状況調査(指定調査機関 2015-8-1001) 作業環境測定(滋賀労基第25-2号) 建築物飲料水水質検査(滋賀県R03水第1095号)

ダイオキシン類濃度分析結果

試料名(計量の対象): 1号焼却炉 煙突サンプリング孔

試料名(計量の対象) : 1号焼却	炉 煙突サンプ					
	実測濃度		試料における	酸素換算	毒性等価	毒性等量
		定量下限	検出下限	濃度	# 任 守 伽 係 数	mg-TEQ/m³)
	(ng/m³)	(ng/m^3)	(ng/m^3)	(ng/m^3)	下 数	(IIS_IEA\II)
_{राई} 1, 3, 6, 8-TeCDD	0. 024	0. 0008	0. 0002	0. 078	0	0
4, 1 0 4 0 W UDD	0. 0055	0. 0008	0. 0002	0. 018	Ö	Ŏ
	ND	0. 0008	0. 0002	ND	1	0
± 1, 0, 1, 0 10022	עא 0. 036	0. 0000	0.0002	0. 12	1	
I LECTING		0.0017	0. 0005	0. 12	1	0
1, 2, 3, 7, 8, -PeCDD	(0.0006)	0. 0017			1	U
べ PeCDDs	0. 054	-	- 0.01	0. 17		
1, 2, 3, 4, 7, 8-HxCDD	ND	0. 003	0.001	ND	0. 1	0
1, 2, 3, 6, 7, 8-HxCDD	0. 0042	0. 0025	0. 0007	0. 014	0. 1	0. 0014
1, 2, 3, 7, 8, 9-HxCDD	(0.0015)	0. 0025	0. 0007	0. 0050	0. 1	0
F HxCDDs	0. 097		-	0. 31	_	_
	0. 031	0. 0025	0.0007	0. 099	0. 01	0. 00099
オ UnCDDc	0. 064	_	-	0. 21	-	-
キ Inpends シ OCDD	0. 038	0. 003	0. 001	0. 12	0. 0003	0. 000036
> Total PCDDs	0. 29	-	-	0. 93	-	0. 002426
1, 2, 7, 8-TeCDF	(0.0005)	0. 0017	0. 0005	0. 0017	0	0
2, 3, 7, 8-TeCDF	ND ND	0. 0017	0. 0005	ND	0. 1	0
	0. 019	0.0011	0.0000	0. 062	U. 1 —	_
TeCDFs	(0.0006)	0. 0008	0. 0002	0. 002	0. 03	0
式 1, 2, 3, 7, 8-PeCDF						0
U 2, 3, 4, 7, 8-PeCDF	(0.0015)	0. 0025	0. 0007	0. 0049	0. 3	0
塩 PeCDFs 素 1 2 2 4 7 8 HrCDE	0. 020	- 0.015	- 0.005	0. 065	-	-
1, 2, 3, 4, 1, 8-HXUDF	(0.0009)	0. 0017	0. 0005	0. 0030	0. 1	0
⇒ 1, 2, 3, 6, 7, 8-HxCDF	(0.0013)	0. 0025	0. 0007	0. 0041	0. 1	0
	ND	0. 003	0. 001	ND	0. 1	0
2, 3, 4, 6, 7, 8-HxCDF	(0.0025)	0. 0025	0.0007	0.0080	0. 1	0
HxCDFs	0. 018	=	U Sea	0. 057		2
5 1, 2, 3, 4, 6, 7, 8-HpCDF	0. 0034	0. 0025	0.0007	0. 011	0. 01	0. 00011
> 1, 2, 3, 4, 7, 8, 9-HpCDF	(0.0008)	0. 0017	0. 0005	0. 0025	0. 01	0
HpCDFs	0. 0089		2-2	0. 028		-
OCDF	(0.0023)	0. 0025	0. 0007	0. 0073	0. 0003	0
Total PCDFs	0. 069	-	-	0. 22	-	0. 00011
Total (PCDDs+PCDFs)	0. 36			1. 2	-	0. 002536
	The second second					0. 002330
3. 4. 4′, 5-TeCB (#81)	0. 0014	0. 0008	0. 0002	0. 0044	0. 0003	
ダ 3, 3′, 4, 4′ –TeCB (#77)	0.0066	0. 0017	0. 0005	0. 021	0. 0001	0. 0000021
3, 3', 4, 4', 5-PeCB (#126)	(0.0012)	0. 0017	0. 0005	0. 0037	0. 1	0
+ 3, 3', 4, 4', 5, 5' -HxCB (#169)	(0.0009)	0. 0025	0. 0007	0. 0029	0. 03	0
シ Total ノンオルト体	0.010	=	() Au	0. 032	-	0. 00000342
ン 様 2′, 3, 4, 4′, 5-PeCB (#123)	(0.001)	0. 003	0.001	0.004	0. 00003	0
禄 2, 3′, 4, 4′, 5-PeCB (#118)	0. 037	0. 003	0. 001	0. 12	0. 00003	0. 0000036
2, 3, 3', 4, 4' –PeCB (#105)	0. 013	0. 004	0. 001	0. 041	0. 00003	0. 00000123
塩 9 2 1 1' 5_DoCR (#1111)	(0.001)	0. 003	0. 001	0. 004	0. 00003	0
奈 o o/ 4 4/ E E/ H OD /#107)	(0. 0010)	0. 0025	0. 0007	0. 0033	0. 00003	0
化 2、3′、4、4′、5、5 -HXCB (#167) ビ 2、3、3′、4、4′、5-HXCB (#156)	(0.003)	0. 003	0. 001	0. 008	0. 00003	0
7 2, 3, 3', 4, 4', 5' HxCB (#157)	ND	0.003	0. 001	ND	0. 00003	0
2, 0, 0 , 4, 4 , 0 HACD (#101/	ND	0. 003	0. 001	ND	0. 00003	0
2, 3, 3', 4, 4', 5, 5' -HpCB (#189)		- 0.000	0. 001 —	0. 18		0. 00000483
ル Total モノオルト体	0.056		_	0. 18	_	0. 00000485
Total DL-PCBs	0. 066					0. 0005
Total f イオキシン類				/ =	_ =+	0.0023

- 注)1 実測濃度中の括弧付の数値は、検出下限以上定量下限未満の濃度であることを示す。
- 注)2 実測濃度中の"ND"は、検出下限未満の濃度であることを示す。
- 注)3 酸素換算濃度:酸素12%換算濃度は次式により算出した。

酸素換算濃度= (21-12)/(21-0s)×実測濃度 (0s=18.2%)

- 注) 4 毒性等価係数はWHO/IPCS (2006) のTEFを適用した。
- 注)5 毒性等量は定量下限未満の実測濃度を0(セ゚ロ)として算出した。
- 注)6 発行者の書面による承諾なしに本計量証明書の一部分だけを複製することは禁止しています。

〒 526−0021

住 所:滋賀県長浜市八幡中山町200番地

宛 名:湖北広域行政事務センター管理者 松居 雅人

所 属:クリスタルプラザ 御中

電 話: 0749-62-7141 FAX:0749-63-5699

ご依頼を受けました試料の計量の結果を 次の通り証明いたします。

発行番号 頁 数 発行年月日 P22-1661-6D6. 006 (1/2) 2022年7月6日

濃度計量証明書

〒520-3024 滋賀県栗東市小柿七丁目9番1号 TEL 077-514-7088 FAX 077-514-7188 株式会社 近畿分析センター 西 本事業所

認定番号:N-0017-02、登録番号:滋賀県第21-01号

計量管理者 吉田 (登録番号:濃度 第6769号)

件 名

令和4年度 第99号 クリスタルプラザダイオキシン類等測定分析業務(クロスチェック)

1. 試料名(計量の対象)

2号焼却炉 煙突サンプリング孔

2. 試料の採取条件(受領条件)等

 1997 N. T. T.	2014 - 14 1 1 1	1000100101111					
受領方法	採取	採	取	条	件	備	考
年月日	2022/06/09	天候(当日)	晴	気圧(hPa)	1004		
採取者	林靖	天候(前日)	曇	開始時刻	10:10		
	三島	気温 (℃)	24. 0	終了時刻	14:10		
= :	*	_	÷				

3. 計量結果 (ダイオキシン類分析結果の詳細は別紙に示す)

J. 同里加入	() (4777	ガスノリールローバー	へつロール田(マソルル	*(C/N) /	
計量の対象	細目	単 位	計量の結果		計量の方法
ダイオキシン類	毒性等量※	ng-TEQ/m ³	0. 0033		
					平成11年総理府令第67号
(内訳)					ダイオキシン類対策特別措置法
Total (PCDDs+PCDFs)	酸素換算濃度	ng/m³	1. 2		施行規則 第2条-1
	毒性等量※	ng-TEQ/m³	0. 00332		(JIS K 0311:2020 排がス
Total DL-PCBs	酸素換算濃度	ng/m³	0. 30		中のダイオキシン類の測定方法)
	毒性等量※	ng-TEQ/m ³	0. 0000117		
-以下余白-					

- 注) 1 有効数字桁数はダイオキシン類内訳の毒性等量が3桁、その他は2桁です。
- 注) 2 DL-PCBsはダイオキシン類対策特別措置法第2条に定義されるCo-PCBs(コプラナーポリ塩化ビフェニル)と同義です。
- 注)3 ※印の項目は計量法107条の対象となる証明事業には該当していません。
- 注)4 各単位のm³は標準状態(0℃, 101.32kPa)のガス量を示しています。
- 注)5 酸素換算濃度計算式

C= (21-12) / (21-0s) ×Cs C:酸素換算濃度 Os:実測酸素濃度 Cs:実測濃度

- 注)6 毒性等価係数はWHO/IPCS (2006) のTEFを適用した。
- 注)7 毒性等量は定量下限未満の実測濃度を0(ゼロ)として算出した。
- 注) 8 発行者の書面による承諾なしに本計量証明書の一部分だけを複製することは禁止しています。

ダイオキシン類濃度分析結果

試料名(計量の対象)・2号焼却炉 煙突サンプリング孔

試彩	名(計量の対象) : 2号焼却	炉 煙突サンプ					
Г		実測濃度		試料における	酸素換算	毒性等価	毒性等量
ı		(ng/m³)	定量下限	検出下限	濃度。	係数	(ng-TEQ/m ³)
		(118/111/	(ng/m^3)	(ng/m^3)	(ng/m^3)	VI 900	
ポ	1, 3, 6, 8-TeCDD	0. 033	0. 0008	0. 0003	0. 099	0	0
	1, 3, 7, 9-TeCDD	0. 0058	0. 0008	0. 0003	0. 017	0	0
	2, 3, 7, 8-TeCDD	ND	0. 0008	0. 0003	ND	1	0
素	TeCDDs	0. 048	_	=	0. 14	_	
	1, 2, 3, 7, 8, -PeCDD	(0.0007)	0. 0017	0. 0005	0. 0020	1	0
	PeCDDs	0. 064	_	-	0. 19	_	-
ン	1, 2, 3, 4, 7, 8-HxCDD	(0.001)	0. 003	0. 001	0. 004	0. 1	0
ゾ	1, 2, 3, 6, 7, 8-HxCDD	0. 0041	0. 0025	0. 0008	0. 012	0. 1	0. 0012
	1, 2, 3, 7, 8, 9-HxCDD	(0.0021)	0. 0025	0. 0008	0. 0062	0. 1	0
	HxCDDs	0. 092	- 0.0020	_	0. 28	-	-
	1, 2, 3, 4, 6, 7, 8-HpCDD	0. 029	0. 0025	0. 0008	0. 086	0. 01	0. 00086
オー	HpCDDs	0. 064	-	-	0. 19	-	_
キ	OCDD	0. 034	0. 003	0. 001	0. 10	0. 0003	0. 000030
シン	Total PCDDs	0. 30	-	- 0. 001	0. 10	-	0. 002090
H		(0.0008)	0. 0017	0. 0005	0. 0025	0	0. 002000
	1, 2, 7, 8-TeCDF	(0.0008)	0. 0017	0. 0005	0. 0023	0. 1	0
ı	2, 3, 7, 8-TeCDF	0. 023	0. 0011	0. 0000	0. 070	0. 1	
1	TeCDFs	0. 025	0. 0008	0. 0003	0. 0026	0. 03	0. 000078
ポ	1, 2, 3, 7, 8-PeCDF	(0.0018)	0. 0008	0. 0003	0. 0020	0. 03	0. 000010
り塩	2, 3, 4, 7, 8-PeCDF	0. 027	0. 0025	0. 0000	0. 0034	- · ·	0
素	PeCDFs		0. 0017	0. 0005	0. 0041	0. 1	0
化	1, 2, 3, 4, 7, 8-HxCDF	(0.0014)		0. 0003	0. 0041	0. 1	0
ジ	1, 2, 3, 6, 7, 8-HxCDF	(0. 0015)	0. 0025	0. 0008	ND	0. 1	0
ベン	1, 2, 3, 7, 8, 9-HxCDF	ND	0. 003			0. 1	0. 0010
ゾ	2, 3, 4, 6, 7, 8-HxCDF	0. 0035	0. 0025	0. 0008	0. 010	U. 1 —	0. 0010
フ	HxCDFs	0. 024			0. 071		0. 00015
ラン	1, 2, 3, 4, 6, 7, 8-HpCDF	0. 0050	0. 0025	0. 0008	0. 015	0. 01	0. 00013
	1, 2, 3, 4, 7, 8, 9-HpCDF	(0.0010)	0. 0017	0. 0005	0. 0029	0. 01	U
1	HpCDFs	0. 012	0.0005	- 0.000	0. 036	LAST CONTRACTOR	0. 0000030
	OCDF	0. 0034	0. 0025	0. 0008	0. 010	0. 0003	
	Total PCDFs	0. 090		_	0. 27	-	0. 0012310
	Total (PCDDs+PCDFs)	0. 39		-	1. 2	-	0. 0033210
	3, 4, 4', 5-TeCB (#81)	0. 0017	0. 0008	0. 0003	0. 0051	0. 0003	0. 00000153
ダ	3, 3', 4, 4' -TeCB (#77)	0. 010	0. 0017	0. 0005	0. 031	0. 0001	0. 0000031
1 7	3, 3', 4, 4', 5-PeCB (#126)	(0.0013)	0. 0017	0. 0005	0. 0040	0. 1	0
十	3, 3', 4, 4', 5, 5' -HxCB (#169)	(0.0010)	0. 0025	0. 0008	0. 0030	0. 03	0
シ	Total ノンオルト体	0. 014		=	0. 043	=	0. 00000463
↓¥	2', 3, 4, 4', 5-PeCB (#123)	(0.001)	0. 003	0. 001	0. 003	0. 00003	0
様ポ	2, 3', 4, 4', 5-PeCB (#118)	0. 055	0. 003	0. 001	0. 16	0. 00003	0. 0000048
ij	2, 3, 3', 4, 4' -PeCB (#105)	0. 022	0. 004	0. 001	0.067	0. 00003	0. 00000201
塩	2, 3, 4, 4', 5-PeCB (#114)	(0.002)	0. 003	0. 001	0. 007	0. 00003	0
素化	2, 3', 4, 4', 5, 5' -HxCB (#167)	(0.0017)	0. 0025	0. 0008	0. 0050	0. 00003	0
ビビ	2, 3, 3', 4, 4', 5-HxCB (#156)	0.003	0.003	0. 001	0. 010	0. 00003	0. 00000030
l ラ	2, 3, 3', 4, 4', 5' –HxCB (#157)	ND	0. 003	0.001	ND	0. 00003	0
エ	2, 3, 3', 4, 4', 5, 5' -HpCB (#189)	ND	0. 003	0.001	ND	0.00003	0
ニル	Total モノオルト体	0. 086			0. 26	-	0. 00000711
1 "	Total DL-PCBs	0. 10	i a ca i	=	0. 30		0. 00001174
	Total g イオキシン類	_	-	_	-	=	0. 0033
_	1 (古)四十二十八年(十八年)	- 10 · 10 == 100 is	1 - de El	also NAHE on NAHE refer to	アキスァレオ		

- 注)1 実測濃度中の括弧付の数値は、検出下限以上定量下限未満の濃度であることを示す。
- 注)2 実測濃度中の"ND"は、検出下限未満の濃度であることを示す。
- 注)3 酸素換算濃度:酸素12%換算濃度は次式により算出した。

酸素換算濃度= (21-12)/(21-0s)×実測濃度 (0s=18%)

- 注) 4 毒性等価係数はWHO/IPCS (2006) のTEFを適用した。
- 注)5 毒性等量は定量下限未満の実測濃度を0(セ゚ロ)として算出した。
- 注)6 発行者の書面による承諾なしに本計量証明書の一部分だけを複製することは禁止しています。

令和4年度悪臭測定分析結果

(令和4年度)

資料9

<u>(令和4年度)</u>					
	単位	令和4年	7月21日	長浜市	協定値
	半江	風上	風下	文供巾	历足但
アンモニア	ppm	0.01	0.07	1	0.6
メチルメルカプタン	ppm	< 0.0005	< 0.0005	0.002	0.0007
硫化水素	ppm	< 0.005	< 0.005	0.02	0.006
硫化メチル	ppm	< 0.001	< 0.001	0.01	0.002
二硫化メチル	ppm	< 0.001	< 0.001	0.009	0.003
トリメチルアミン	ppm	< 0.0005	< 0.0005	0.005	0.001
アセトアルデヒド	ppm	< 0.005	< 0.005	0.05	0.01
プロピオンアルデヒド	ppm	< 0.01	< 0.01	0.05	0.02
ノルマルブチルアルデヒド	ppm	< 0.001	< 0.001	0.009	0.003
イソブチルアルデヒド	ppm	< 0.001	< 0.001	0.02	0.008
ノルマルバレルアルデヒド	ppm	< 0.001	< 0.001	0.009	0.004
イソバレルアルデヒド	ppm	< 0.0005	< 0.0005	0.003	0. 001
イソブタノール	ppm	< 0.1	< 0.1	0.9	0.2
酢酸エチル	ppm	< 0.1	< 0.1	3	1
メチルイソブチルケトン	ppm	< 0.1	< 0.1	1	0.7
トルエン	ppm	< 0.1	< 0.1	10	5
キシレン	ppm	< 0.1	< 0.1	1	0.5
スチレン	ppm	< 0.1	< 0.1	0.4	0.2
プロピオン酸	ppm	< 0.005	< 0.005	0.03	0.01
ノルマル酪酸	ppm	< 0.001	< 0.0001	0.001	0.0004
ノルマル吉草酸	ppm	< 0.0001	< 0.0001	0.0009	0.0005
イソ吉草酸	ppm	< 0.0001	< 0.0001	0.001	0.0004
臭気強度(6段階強度表示法)	_	0.5	0.5	_	_
		サンプルタ			
天候	_	曇	雲		
気温	$^{\circ}$ C	29	29		
湿度	%	55	58		
風向	_	南	南		
風速	m/s	0.1~0.2	0.1	l \	

臭気強度目安【6段階臭気強度表示法】

	X TOTAL TOTAL
臭気強度	判定の目安
0	無臭
1	やっと感知できる臭い
2	何の臭いであるか分かる弱い臭い
3	楽に感知できるにおい
4	強い臭い
5	強烈な臭い

〒

526-0021

住 所: 滋賀県長浜市八幡中山町200番地

名: 湖北広域行政事務センター管理者 松居 雅人

属: クリスタルプラザ 御中

電 話 : 0749-62-7141 FAX:0749-63-5699

ご依頼を受けました試料の 計量の結果を次の通り証明いたします。

(1)2022年8月5日 発行年月日

P22-1940-7T3. 01

濃度計量証明書

〒520-3024

No.

滋賀県栗東市小姉七丁目9番1号 TEL (077) 514-7088

FAX (077) 514-7188

近畿分析センター西半葉所 株式会社 近畿

登録番号:滋賀県濃度第1号

環境計量士 山口 (登録番号: 濃度 第1638号)

件 名

令和4年度 第215号 クリスタルプラザ臭気測定業務

1. 試 料 名

敷地境界 風上

計場幼里

2. 計量結果				,				
計量の対象	単位	計量の結果		=,	-	比較判定	基準値	計量の方法
[採取時刻]								
開始時刻※	時:分	9:24	22	= 1	-		-	
終了時刻※	時:分	9:51	===	-	-		-	
[気象条件]								
気温※	$^{\circ}$ C	28. 6	-		-	_		電気式温度計
湿度※	%	55						電気式湿度計
気圧※	hPa	1002	-		-		_	電気式気圧計
風向※	-	南		-		-		矢羽根式風向計
風速※	m/s	0.1~0.2	=	==	=		=	風杯式風速計
[分析結果]								
アンモニア	ppm	0. 01	==0	-	=	基準満足	0. 6	環告第9号別表1
硫化水素	ppm	<0.005		=		基準満足	0. 006	
メチルメルカフ。タン	ppm	<0.0005	<u>==</u> 6	==:	_	基準満足	0. 0007	環告第9号別表2
硫化メチル	ppm	<0.001			_	基準満足	0. 002	探日 免り つかれる
二硫化メチル	ppm	<0.001			-	基準満足	0. 003	
トリメチルアミン	ppm	<0.0005		==:	-	基準満足	0. 001	環告第9号別表3
アセトアルデ ヒト	ppm	<0.005	-	-	-	基準満足	0. 01	
プ゜ロヒ゜オンアルデ゛ヒト゛	ppm	<0.01	-	-	-	基準満足	0. 02	
ノルマルブ チルアルデ ヒト	ppm	<0.001	 3	-	-	基準満足	0. 003	環告第9号別表4
イソブ チルアルデ ヒト	ppm	<0.001	-	-	-	基準満足	0. 008	採口知り与別なせ
ノルマルハ レルアルテ ヒト	ppm	<0.001	 2	- 	_ =	基準満足	0.004	
イソハ レルアルデ ヒト	ppm	<0.0005	=	-	=	基準満足	0.001	
イソフ・タノール	ppm	<0.1)	-	-	基準満足	0. 2	環告第9号別表5
酢酸エチル	ppm	⟨0. 1	=	-		基準満足	1	環告第9号別表6
メチルイソフ。チルケトン	ppm	<0.1	-		144	基準満足	0. 7	県百角3万別衣 0
トルエン	ppm	₹0. 1	_	-	===	基準満足	5	
スチレン	ppm	⟨0. 1	_	=	22)	基準満足	0. 2	環告第9号別表7
キシレン	ppm	₹0. 1	_	_	_	基準満足	0. 5	
プロヒ。オン酸	ppm	<0.005	=		-	基準満足	0. 01	
ノルマル酪酸	ppm	<0.0001	-	_	-	基準満足	0. 0004	環告第9号別表8
ノルマル吉草酸	ppm	<0.0001	-	-	-	基準満足	0. 0005	堺百男3万別衣○
7.7.5.1 中心	ppm	<0.0001	-			基準満足	0. 0004	

- 注)1 基準値は、本業務の仕様書別紙に示されている値を適用しました。
- 注) 2 環告第9号:特定悪臭物質の測定の方法(昭和47年5月30日 環境庁告示第9号)
- 注)3 測定地点の概略図は、添付資料に示します。
- 注)4 ※印の項目は計量法107条の対象となる証明事業には該当しておりません。

*発行者の書面による承諾なしに本計量証明書の一部分だけを複製することは禁止しております。

事業登録:環境計量証明(滋賀県特定濃度21-01号・濃度第1号・振動第1号・騒音第5号) 土壌汚染状況調査(指定調査機関 2015-8-1001) 作業環境測定 (滋賀労基第25-2号) 建築物飲料水內質檢查 (滋賀県R03水第1095号)

〒 526-0021

住 所 : 滋賀県長浜市八幡中山町200番地

名 : 湖北広域行政事務センター管理者 松居 雅人

属: クリスタルプラザ 御中

話: 0749-62-7141 FAX:0749-63-5699

ご依頼を受けました試料の 計量の結果を次の通り証明いたします。

P22-1940-7T3. 01 (2)

2022年8月5日 発行年月日

濃度計量証明書

〒520-3024

No.

滋賀県栗東市小楠七丁目9番1号 **CICHTEL** (077) 514-7088 FAX (077) 514-7188

株式会社近畿分析セン西中半新

登録番号:滋賀県濃度第1号 環境計量士

山口 (登録番号:濃度 第1638号)

件 名

令和4年度 第215号 クリスタルプラザ臭気測定業務

敷地境界 風下 1. 試 料 名

	採取	条件	備考
採取年月日	2022/7/21	天 候 曇	
	浜田		
採取者	二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二		
-			

2 計量結里

2. 計重結果								
計量の対象	単位	計量の結果		_		比較判定	基準値	計量の方法
[採取時刻]								
開始時刻※	時:分	10:02	-		-		-	
終了時刻※	時:分	10:29	÷-	-	-	-	-	
「気象条件」								
気温※	°C	29. 2	-	-			S=	電気式温度計
湿度※	%	58	77		===		=	電気式湿度計
気圧※	hPa	1002	-	-	===	-		電気式気圧計
風向※		南	7-					矢羽根式風向計
風速※	m/s	0. 1		===	==	===		風杯式風速計
[分析結果]								
アンモニア	ppm	0. 07	-	_		基準満足	0. 6	環告第9号別表1
硫化水素	ppm	<0.005			====	基準満足	0. 006	
メチルメルカフ。タン	ppm	<0.0005	-	-	_	基準満足	0. 0007	環告第9号別表2
硫化メチル	ppm	<0.001	-	_	-	基準満足	0. 002	県百弟3万川衣 △
二硫化メチル	ppm	<0.001	-	-		基準満足	0. 003	
トリメチルアミン	ppm	<0.0005	-			基準満足	0. 001	環告第9号別表3
アセトアルテ"ヒト"	ppm	<0.005	100			基準満足	0.01	
プ ロヒ オンアルデ ヒト	ppm	<0.01	==		====	基準満足	0. 02	
ノルマルブ チルアルデ ヒト	ppm	<0.001	777 .	-		基準満足	0. 003	環告第9号別表4
イソブ チルアルデ ヒト	ppm	<0.001	#	=	==	基準満足	0.008	泉口房り与別なせ
ノルマルハ レルアルテ ヒト	ppm	<0.001	-			基準満足	0. 004	
イソハ レルアルデ ヒト	ppm	<0.0005	1			基準満足	0. 001	
イソフ タノール	ppm	<0.1	-	===		基準満足	0. 2	環告第9号別表5
酢酸エチル	ppm	<0.1	<u></u>	===		基準満足	1	環告第9号別表6
メチルイソフ゛チルケトン	ppm	<0.1	-			基準満足	0. 7	塚口寿3万別及0
トルエン	ppm	<0.1	-	_	==	基準満足	5	
スチレン	ppm	<0.1	÷ .	-		基準満足	0. 2	環告第9号別表7
キシレン	ppm	⟨0. 1	-	-	-	基準満足	0. 5	
プロピオン酸	ppm	<0.005	100 1	=	= 1	基準満足	0. 01	
ノルマル酪酸	ppm	<0.0001	 1	-	-	基準満足	0. 0004	環告第9号別表8
リルマル吉草酸	ppm	<0.0001	=			基準満足	0. 0005	衆百弟3万別衣 O
(ソ)吉草酸	ppm	<0.0001	=	=		基準満足	0. 0004	

- 注)1 基準値は、本業務の仕様書別紙に示されている値を適用しました。
- 注)2 環告第9号:特定悪臭物質の測定の方法(昭和47年5月30日 環境庁告示第9号)
- 測定地点の概略図は、添付資料に示します。
- 注)4 ※印の項目は計量法107条の対象となる証明事業には該当しておりません。

*発行者の書面による承諾なしに本計量証明書の一部分だけを複製することは禁止しております。

事業登録:環境計量証明(滋賀県特定濃度21-01号・濃度第1号・振動第1号・騒音第5号) 土壌汚染状況調査(指定調査機関 2015-8-1001) 作業環境測定(滋賀労基第25-2号) 建築物飲料水水(黃黃金) (滋賀県R03水第1095号)

干 526-0021

住 所: 滋賀県長浜市八幡中山町200番地

宛 名: 湖北広域行政事務センター管理者 松居 雅人

所 属: クリスタルプラザ 御中

話: 0749-62-7141 FAX:0749-63-5699

ご依頼を受けました試料の分析の結果を次の通り報告いたします

(1) 2022年8月5日 発行年月日 報告書証明書 析気

P22-1940-7T3. 02

〒520-3024

No.

滋賀県栗東市小柿七丁目9番1号 (077) 514-7088 FAX (077) 514-7188

株式会社

全事業 ンター

臭気判定士

山口

(登録番号:第02957号

件 名

令和4年度 第215号 クリスタルプラザ臭気測定業務

試 料 名 敷地境界 風上 1.

	採取	条	件	備考
採取年月日	2022/07/21	天 候	曇	
	浜田			
採取者	三島			

2. 測定・分	析結果						
項	目	単位	分析值	=	_	<u> </u>	分析(検定)方法
[採取時刻]							
開始時刻	В	時:分	9:52	·—			==
終了時刻		時:分	9:53	(:			-
[気象条件]							
気温		$^{\circ}$	28. 6	=		-	電気式温度計
湿度		%	55	===	-		電気式湿度計
気圧		hPa	1002	 	50-7.1		電気式気圧計
風向		<u></u>	南	-			矢羽根式風向計
風速		m/s	0.1~0.2	=		3-1	風杯型風速計
[分析結果]							
臭気強度			0. 5	=	₩	=	六段階臭気強度表示法
-以下余白-							
NAVA Strike Left, the one	from - 5- 11 3- 3- 3-2-	or 1 1 Merital 1 a	- 1 -11-				

注)測定地点の概略図は、添付資料に示します。

526-0021 一

住 所: 滋賀県長浜市八幡中山町200番地

宛 名: 湖北広域行政事務センター管理者 松居 雅人

所属: クリスタルプラザ 御中

話: 0749-62-7141 FAX:0749-63-5699

(2)2022年8月5日 発行年月日 報告 書書

P22-1940-7T3. 02

〒520-3024

No.

滋賀県栗東市小柿七丁目9番1号 (077) 514-7088 FAX (077) 514-7188

愛カター 所 株式会社 近畿 西

臭気判定士

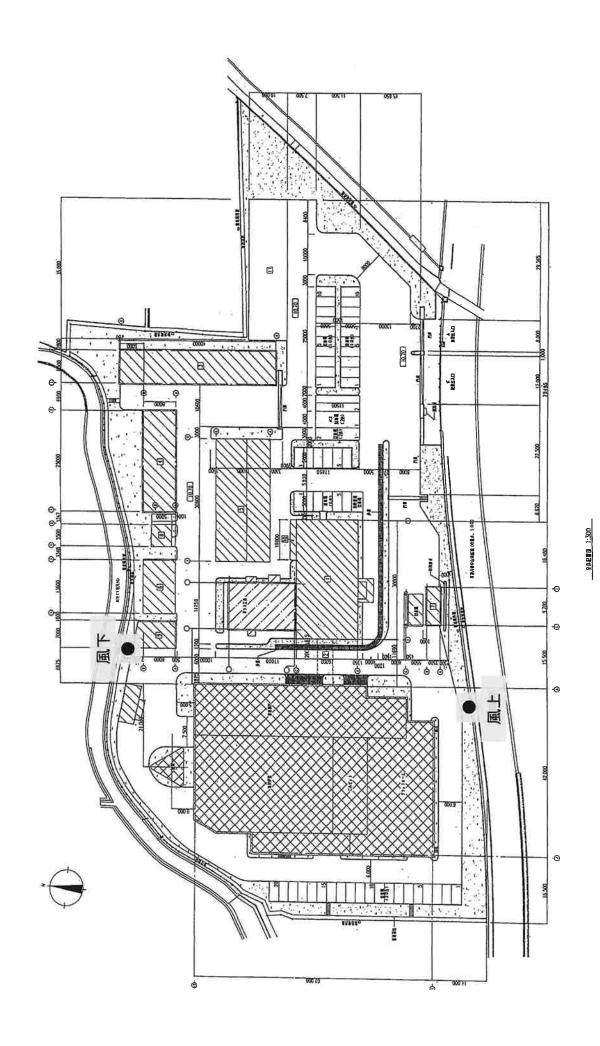
山口

(登録番号:第02950号)

ご依頼を受けました試料の分析の結果を次の通り報告いたします

件 名

令和4年度 第215号 クリスタルプラザ臭気測定業務


1. 試 料 名 敷地境界 風下

	採取	条	件	備考
採取年月日	2022/07/21	天 候	曇	
	浜田			
採取者	三島			

测学, 公坛姓甲

2. 測定・分析結果	f					
項目	単位	分析值	-	_	-	分析(検定)方法
[採取時刻]						
開始時刻	時:分	10:30	-		=	-
終了時刻	時:分	10:31		=	-	-
[気象条件]						
気温	${\mathcal C}$	29. 2	3 -3	_	-	電気式温度計
湿度	%	58	-	_	-	電気式湿度計
気圧	hPa	1002	=	_	===	電気式気圧計
風向	=	南	-		=	矢羽根式風向計
風速	m/s	0. 1	8=8	_	=	風杯型風速計
[分析結果]						
臭気強度	S -	0. 5	-	_		六段階臭気強度表示法
-以下余白-						

注) 測定地点の概略図は、添付資料に示します。

排ガス中の水銀の分析結果

分析項目		試料採取日	分析値	改正大気汚染防止法の基準値 (平成30年4月1日~)
	1 号炉	令和元年7月10日	1.6 μg/m³N	
	2号炉	令和元年7月11日	1.5 μg/m³N	
	1 号炉	令和元年11月20日	3.5 μg/m³N	
	2 号炉	令和元年11月21日	2.7 μg/m³N	
	1 号炉	令和元年12月18日	0.18 μg∕m³N	
	2 号炉	17476-1271104	1.4 μg/m³N 未満	
	1 号炉	令和2年6月10日	1.3 μg/m³N 未満	
	2 号炉	令和2年6月11日	1.4 μg/m³N 未満	
	1号炉	令和2年7月9日	1.3 μg/m³N 未満	- 50 μ g∕ m³N
全水銀	2 号炉	114421713-4	1.5 μg/m³N 未満	
	1号炉	令和2年11月18日	20 μg/m³N	
	2号炉	令和2年11月19日	1.7 μg/m³N	
	1 号炉	令和3年6月16日	1.4 μg/m³N 未満	
	2 号炉	令和3年6月17日	1.3 μg/m³N 未満	
	1号炉	令和3年9月28日	1.3 μg/m³N 未満	
	2号炉	令和3年9月28日	1.4 μg/m³N 未満	
	1号炉	令和4年1月19日	1.5 μg/m³N 未満	
	2 号炉	令和4年1月19日	1.6 μg/m³N 未満	
	1 号炉	令和4年6月8日	1.6 μg/m³N 未満	
	2 号炉	令和4年6月9日	1.5 μg/m³N 未満	

湖北広域行政事務センター クリスタルプラザ 様

発行番号 発行日 JAF0697-001 2021年10月18日 滋賀県環境保全協会指定分析機関 環境計量証明事業(張度密録第6号) 環境計量証明事業(聚音登録第3号) 環境計量証明事業(振動登録第6号 株式会社 日

〒523-8555

滋賀県近江八幡市北之庄町908番地

TEL 0748-32-5001 (直通) FAX 0748-32-4192

ご依頼のありました濃度に係る計量の結果を次の通り証明いたします。

環境計量士 築山 直引

調査工場事業所名	湖北広域行政事務センター
調査施設名	クリスタルプラザ 1号焼却炉 煙突
所在地	滋賀県長浜市八幡中山町200番地
調査年月日	2021年9月28日
調査時刻	09:30~12:30
測定者氏名	藤本 逸雄 臼井 尚幸

計量の	対象	単位	計量結果	基準値	判定	計量方法
排出ガス量	湿り	m ³ N/h	85300			JIS Z 8808
11	乾き	m ³ N/h	71300	- 6		
排出ガス温度	9	°C	141			4 21
排出ガス水分量		%	16.4			JIS Z 8808
排出ガス組成	CO2	% /	3.3	Α	a	JIS K 0301
	O2	%	17.6			
	CO	%	0.0			Λ μ.
	.N2	%	79.1			
ばいじん濃度	測定値	g/m³N	0.001未満		2	JIS Z 8808
	酸素換算值 (12%)	g/m³N	0.001未満	0.02	合	
硫黄酸化物	硫黄酸化物濃度	V/Vppm	1.6未満	50	合	JIS K 0103 附属書JC
	硫黄酸化物量	m³N/h	0.11未満	100	合	
	K値		0.016未満	14.5		9 5
窒素酸化物	測定値	ppm	27			JIS K 0104-8
	酸素換算値 (12%)	ppm	87	125	合	
塩化水素濃度	測定値	mg/m³N	9.8			JIS K 0107 附属書A
	酸素換算值 (12%)	mg/m³N	25			
	測定値	ppm	6.0			
	酸素換算值 (12%)	ppm	15	100	合	* 1 N
全水銀濃度	測定値	μg/m³N	0.5未満		3	環境省告示第94号
	酸素換算値(12%)	μg/m3N	1.3未満	50	合	
(ガス状水銀濃度)	測定値	μg/m3N	0.5未満			
0 0	酸素換算值 (12%)	μg/m3N	1.3未満			
(粒子状水銀濃度)	測定値	μg/m3N	0.05未満			
	酸素換算値 (12%)	μg/m3N	0.13未満			2.
鉄濃度	測定値	mg/m³N	0.05未満		•	JIS K 0102-57.2
						#1
			~	-		
-						у.

測定時、連続運転。 基準値には、長浜市との協定値を採用しました。

湖北広域行政事務センター クリスタルプラザ 様

発行番号 JAF0697-002 発行日 2021年10月18日 滋賀県環境保全協会指定分析機関 環境計量証明事業 (濃度登録第15号) 環境計量証明事業 (騒音登録第3号) 環境計量証明事業 (振動登録第6号) 株式会社 日

〒523-8555

滋賀県近江八幡市北之庄町908番地

· TEL 0748-32-5001 (直通) FAX 0748-32-4192

ご依頼のありました濃度に係る計量の結果を次の通り証明いたします。

環境計量士 築山 直

調査工場事業所名	湖北広域行政事務センター
調査施設名	クリスタルプラザ 2号焼却炉 煙突
所在地	滋賀県長浜市八幡中山町200番地
調査年月日	2021年9月28日
調査時刻	11:45~15:00
測定者氏名	藤本 逸雄 臼井 尚幸

計量の対象		単位	計量結果	基準値	判定	計量方法
排出ガス量	湿り	m³N/h	83000			JIS Z 8808
	乾き	m ³ N/h	69300			. X
排出ガス温度	8	°C	169			
排出ガス水分量	-	%	16.5			JIS Z 8808
排出ガス組成	CO2	%	3.2		V	JIS K 0301
	O2	%	17.7	-1		
ii 5	CO	%	0.0			
	N2	%	79.1	210		
ばいじん濃度	測定値	g/m³N	0.004	4	2"	JIS Z 8808
	酸素換算值 (12%)	g/m³N	0.013	0.02	合	
硫黄酸化物	硫黄酸化物濃度	V/Vppm	1.6未満			JIS K 0103 附属書JC
	硫黄酸化物量	m³N/h	0.11未満	100	合	
*.	K値		0.014未満	14.5		
窒素酸化物	測定値	ppm	28			JIS K 0104-8
	酸素換算值 (12%)	ppm	84	125	合	
塩化水素濃度	測定値	mg/m³N	7.2			JIS K 0107 附属書A
	酸素換算値(12%)	mg/m³N	19			
,	測定値	ppm	4.4	2		
1	酸素換算值 (12%)	ppm	11	100	合	
全水銀濃度	測定値	μg/m³N	0.5未満			環境省告示第94号
	酸素換算值(12%)	μg/m3N	1.4未満	50	-合	
(ガス状水銀濃度)	測定値	μg/m3N	0.5未満		5	
F 1	酸素換算値 (12%)	μg/m3N	1.4未満	1.090		
(粒子状水銀濃度)	測定値	μg/m3N	0.05未満			
	酸素換算值 (12%)	μg/m3N	0.14未満			
鉄濃度	測定値	mg/m³N	0.05未満	- 1		JIS K 0102-57.2
		11	Y			9 *
		-				
	čá m			===	1.1	

測定時、連続運転。

2022年1月19日

09:30~13:30

湖北広域行政事務センター クリスタルプラザ 様

調査工場事業所名

調査施設名

調査年月日

所在地

発行番号 2022年2月21日 発行日 滋賀県環境保全協会指定分析機関 環境計量証明事業(濃度登録第6 環境計量証明事業(騒音登録第3号) 環境計量証明事業(振動學録第6号) 株式会社 日

〒523-8555

滋賀県近江八幡市北之庄町908番地

TEL 0748-32-5001 (直通)

FAX 0748-32-4192 環境計量士

ご依頼のありました濃度に係る計量の結果を次の通り証明いたします。

築山 直弧 湖北広域行政事務センター クリスタルプラサ・1号焼却炉 煙突 滋賀県長浜市八幡中山町200番地

調査時刻 測定者氏名 藤本 逸雄 金井 風樹

計量の対象		単位	計量結果	基準値	判定	計量方法
	湿り	m ³ N/h	81200	F 4		JIS Z 8808
*1	乾き	m³N/h	68900	U		
排出ガス温度		°C	159			
排出ガス水分量	15	%	15.1			JIS Z 8808
排出ガス組成	CO2	.%	2.8		0	JIS K 0301
	O2	%	18.0			
	CO	%	0.0	11	81	
	N2	%	79.2	::		
ばいじん濃度	測定値	g/m³N	0.001未満			JIS Z 8808
	酸素換算値(12%)	g/m³N	0.002未満	0.02	合	127
硫黄酸化物	硫黄酸化物濃度	V/Vppm	1.4未満	50	合	JIS K 0103 附属書JC
	硫黄酸化物量	m ³ N/h	0.096未満	100	合	
£	K値		0.013未満	14.5		
	測定値	ppm	29			JIS K 0104-8
	酸素換算値(12%)	ppm	90	125	合	
塩化水素濃度	測定値	mg/m³N	2.8			JIS K 0107 附属書A
	酸素換算值(12%)	mg/m³N	8.4			
	測定値	ppm	1.7			1 1
	酸素換算値(12%)	ppm	5.1	100	合	3
全水銀濃度	測定値	μg/m³N	0.5未満			環境省告示第94号
	酸素換算値 (12%)	μg/m3N	1.5未満	50	合	
(ガス状水銀濃度)	測定値	μg/m3N	0.5未満	-		
	酸素換算值(12%)	μg/m3N	1.5未満			
(粒子状水銀濃度)	測定値	μg/m3N	0.05未満			6 7 2
11.2	酸素換算值(12%)	μg/m3N	0.15未満			
鉄濃度	測定値	mg/m³N	0.05未満			JIS K 0102-57.2

測定時、連続運転。

湖北広域行政事務センター クリスタルプラザ 様

第行番号 JAF0699-002 第行日 2022年2月21日 滋賀県環境保全協会指定分析機関 環境計量証明事業 (濃度登齡第6号) 環境計量証明事業 (騒音登擊第2号) 環境計量証明事業 (振動登歇第6号) 株式会社 日

〒523-8555

滋賀県近江八幡市北之庄町908番地

TEL 0748-32-5001 (直通) FAX 0748-32-4192

ご依頼のありました濃度に係る計量の結果を次の通り証明いたします。

環境計量士 築山 直見

To consider the second	
調査工場事業所名	湖北広域行政事務センター
調査施設名	クリスタルプラザ 2号焼却炉 煙突
所在地	滋賀県長浜市八幡中山町200番地
調査年月日	2022年1月19日
調査時刻	09:30~15:40
測定者氏名	藤本 逸雄 金井 風樹

計量の対象		単位	計量結果	基準値	判定	計量方法
排出ガス量	湿り	m³N/h	76500			JIS Z 8808
<	乾き	m³N/h	65100 -			8
排出ガス温度		°C	158			¥.
排出ガス水分量		%	14.9			JIS Z 8808
排出ガス組成	CO2	%	2.3			JIS K 0301
	O2	%	18.2			
	СО	%	0.0			
3	N2	%	79.5	N pr		
ばいじん濃度	測定値	g/m³N	0.001			JIS Z 8808
v.	酸素換算值 (12%)	g/m³N	0.004	0.02	合	
硫黄酸化物	硫黄酸化物濃度	V/Vppm	1.4未満	50	合	JIS K 0103 附属書JC
> =	硫黄酸化物量	m³N/h	0.091未満	100	合	0
	K値		0.013未満	14.5		:
窒素酸化物	測定値	ppm	31			JIS K 0104-8
	酸素換算值 (12%)	ppm	90	125	合	
塩化水素濃度	測定値	mg/m³N	3.1			JIS K 0107 附属書A
v	酸素換算値(12%)	mg/m³N	9.6			
	測定値	ppm	1.9			E.
	酸素換算值 (12%)	ppm	6.0	100	合	
全水銀濃度	測定値	μg/m³N	0.5未満			環境省告示第94号
* *	酸素換算值 (12%)	μg/m3N	1.6未満	50	合	
(ガス状水銀濃度)	測定値	μg/m3N	0.5未満			U U
	酸素換算値(12%)	μg/m3N	1.6未満			
(粒子状水銀濃度)	測定値	μg/m3N	0.05未満			2
	酸素換算值(12%)	μg/m3N	0.16未満			2
鉄濃度	測定値	mg/m³N	0.05未満			JIS K 0102-57.2
				J		

測定時、連続運転。

湖北広域行政事務センター クリスタルプラザ 様

整行番号 JBF0422-003 整行日 2022年7月6日 遊賀県環境保全協会指定分析機関 環境計量証明事業 (濃度登録第6号) 環境計量証明事業 (懸音登録第3号) 環境計量証明事業 (振動登録第6号) 株式会社 日

〒523-8555

滋賀県近江八幡市北之庄町908番地

TEL 0748-32-5001 (直通) FAX 0748-32-4192

ご依頼のありました濃度に係る計量の結果を次の通り証明いたします。

環境計量士 吉田和弘

調査工場事業所名	湖北広域行政事務センター
調査施設名	クリスタルプラザ 1号焼却炉 煙突
所在地	滋賀県長浜市八幡中山町200番地
調査年月日	2022年6月8日
調査時刻	09:00~15:30
測定者氏名	藤本 逸雄 大塚 丈吾

計量の	D対象	単位	計量結果	基準値	判定	計量方法
排出ガス量	湿り	m³N/h	85900			JIS Z 8808
	乾き	m³N/h	72600			
排出ガス温度	9 a	°C	154		-	
排出ガス水分量		%	15.5	41		JIS Z 8808
排出ガス組成	CO2	%	2.9		P.:	JIS K 0301
	O2	%	18.2			
	CO	% -	0.0	-		
	N2	%	78.9			
ばいじん濃度	測定値	g/m³N	0.001未満		7	JIS Z 8808
	酸素換算值 (12%)	g/m³N	0.001未満	0.02	合	
硫黄酸化物	硫黄酸化物濃度	V/Vppm	1.5未満	50	合	JIS K 0103 附属書JC
	硫黄酸化物量	m³N/h	0.10未満	100	合	
,	K値		0.014未満	14.5		
窒素酸化物	測定値	ppm	26			JIS K 0104-8
	酸素換算値 (12%)	ppm	90	125	合	LA
塩化水素濃度	測定値	mg/m³N	4.1			JIS K 0107 附属書A
	酸素換算値(12%)	mg/m³N	12			
-	測定値	ppm	2.5			700
8	酸素換算値(12%)	ppm	7.7	100	合	
全水銀濃度	測定値	μg/m³N	0.5未満			環境省告示第94号
	酸素換算值(12%)	μg/m3N	1.6未満	50	合	
(ガス状水銀濃度)	測定値	μg/m3N	0.5未満			
	酸素換算值 (12%)	μg/m3N	1.6未満		1.5	4 4
(粒子状水銀濃度)	測定値	μg/m3N	0.05未満			
	酸素換算値(12%)	μg/m3N	0.16未満			
鉄濃度	測定値	mg/m³N	0.05未満			JIS K 0102-57.2
一酸化炭素濃度	連続測定値	ppm	2未満		7	JIS K 0098-7
	酸素換算値(12%)	ppm	6未満			
酸素濃度	連続測定値	%	18.1			JIS K 0301-6
排出ガス温度	連続測定値	°C	159			JIS Z 8808

測定時、連続運転。

湖北広域行政事務センター クリスタルプラザ 様

JBF0422-009 発行番号 2022年7月6日 発行日 滋賀県環境保全協会指定分析機関 環境計量証明事業(濃度登録第6号) 環境計量証明事業 (騒音登録第3号) 環境計量証明事業 (振動登録第6号) 株式会社 日

〒523-8555 滋賀県近江八幡市北之庄町908番地 TEL 0748-32-5001 (直通) FAX 0748-32-4192

ご依頼のありました濃度に係る計量の結果	を次の通り証明いたします。 環境計量士	吉田	和弘
調査工場事業所名	湖北広域行政事務センター		
調査施設名	クリスタルプラザ 2号焼却炉 煙突	1961 S#1	1
所在地	滋賀県長浜市八幡中山町200番地		
調査年月日	2022年6月9日		
調査時刻	09:00~15:00		
測定者氏名	藤本 逸雄 大塚 丈吾		

計量の対象		単位	計量結果	基準値	判定	計量方法
排出ガス量	湿り	m³N/h	88300			JIS Z 8808
	乾き	m³N/h	72200		- 1	
排出ガス温度		°C	161 (
排出ガス水分量		%	18.2			JIS Z 8808
排出ガス組成	CO2	%	2.6			JIS K 0301
	O2	%	18.0			
	CO	%	- 0.0			
	N2	%	79.4		2 -	*
ばいじん濃度	測定値	g/m³N	0.001			JIS Z 8808
	酸素換算值 (12%)	g/m³N	0.005	0.02	合	R II
硫黄酸化物	硫黄酸化物濃度	V/Vppm	1.5未満	50	合	JIS K 0103 附属書JC
	硫黄酸化物量	m³N/h	0.10未満	110	合	
	K値		0.014未満	14.5		
窒素酸化物	測定値	ppm	29			JIS K 0104-8
	酸素換算值 (12%)	ppm	82	125	合	* "
塩化水素濃度	測定値	mg/m³N	2.8未満			JIS K 0107 附属書A
	酸素換算値 (12%)	mg/m³N	8.4未満			
(80)	測定値	ppm	1.7未満			
	酸素換算值 (12%)	ppm	5.1未満	100	合	
全水銀濃度	測定値	μ g/m ³ N	0.5未満		20	環境省告示第94号
	酸素換算值 (12%)	μg/m3N	1.5未満	50	合	
(ガス状水銀濃度)	測定値	μg/m3N	0.5未満	İ		
	酸素換算值 (12%)	μg/m3N	1.5未満	,		
(粒子状水銀濃度)	測定値	μg/m3N	0.05未満			100
	酸素換算値 (12%)	μg/m3N	0.15未満			1
鉄濃度	測定値	mg/m³N	0.05未満	#1		JIS K 0102-57.2
一酸化炭素濃度	連続測定値	ppm	2未満			JIS K 0098-7
Ť	酸素換算值(12%)	ppm	5未満	-		i:
酸素濃度	連続測定値	%	17.7	- N		JIS K 0301-6
排出ガス温度	連続測定値	°C	162			JIS Z 8808

測定時、連続運転。 基準値には、長浜市との協定値を採用しました。